FUTURE POTENTIALS OBSERVATORY

INNOVATION AND DESIGN HORIZONS

Historical and Economic Aspects of Innovation and Design Horizons in East-West Context

Working Paper

2023

Historical and Economic Aspects of Innovation and Design Horizons in East-West Context – Working Paper

Authors

Dr. Gábor Pörzse	Associate Professor / Senior researcher and team leader
Dr. Zoltán Csedő	Associate Professor / Senior researcher
Dr. Máté Zavarkó	Senior Assistant Professor / Senior researcher
Zoltán Sára	Senior researcher
Publisher:	Future Potentials Observatory
	Jövőképesség Obszervatórium Nonprofit Korlátolt Felelősségű Társaság
	Zugligeti st. 9-25, 1121 Budapest, Hungary

ISBN: 978-615-6727-00-8

Acknowledgement

This research was funded by Future Potentials Observatory, Foundation for Moholy-Nagy University of Art and Design. The authors gratefully thank Prof. Dr. Petra Aczél, Péter Szabadhegy and Prof. Dr. Zoltán Oszkár Szántó for their valuable remarks.

Budapest, 2023

Summary

Background and objectives

The main goal of the Innovation and Design Horizons research of the FPO is to provide insightful **decisions-making material for policymakers** by which they can **contribute to** previously defined areas¹ of **fundamental human goods**. Based on the expectable changes which are relevant to future potentials, this research focuses on different areas of innovation and design according to the key pillars of the future-potential-related strategic fields:

- 1. Ecological and geopolitical changes: Eco- and energy innovation and design
- Technological changes: Technological innovation and design (non-eco and non-energy)
 Socio-economic changes: Social and business model innovation and design
 Cultural and spiritual changes: Cultural innovation and design, design innovation².

In the first phase, the scope of this working paper is the historical and economic aspects of innovation and design horizons in the East-West context. This working paper analyses the relevant innovation and design areas based on Eastern and Western research and establishes the theoretical foundation for the mapping in the second phase, which will be followed by recommendations in the third phase. Accordingly, this work does not aim to provide an exhaustive and overarching literature review on every pre-defined innovation and design area. Instead, the main objectives are to confirm or reject the relevance of the pre-defined innovation areas; moreover, to explore and (re-)interpret the influential topics and thoughts from Western and Eastern research in these innovation areas from the perspective of governing future strategic changes.

Research questions are answered by systematic literature review (SLR) methodology and results are discussed from two key theoretical perspectives of strategic change and innovation which complement each other: transdisciplinary research³ and dynamic capabilities⁴.

¹ Peace and safety, attachment, care, and balance (Szántó, et al., 2020)

² In a cultural sense

³ In line with the practical goal of the study and the (future) real-world problems to solve

⁴ In line with the turbulent and uncertain environment of the present and the future

Main results

Based on quantitative and qualitative SLR data, the pre-defined innovation areas are relevant, but to varying extents. The focal innovation areas can belong to heterogenous research fields (there were 44 related fields even in case of the top 100 reviews), but the main fields are Business and Management, Economics, Engineering, Environmental and Sustainable Science. Based on the top 100 highly cited reviews of the focal areas, the following conclusions can be made:

- 1. Eco-innovation and technological innovation are the main areas where authors of Western and Eastern institutes work together, while social and business model innovation did not induce such influential collaborative works until now.
- 2. Western research seems to be more influential in every innovation area (based on the number of highly cited works).
- 3. Technological innovation, eco-innovation, social innovation, and business model innovation are the most influential topics of the international literature, regarding both Eastern and Western research. The dominance of technological innovation is present in Eastern and Western research as well. In contrast, energy innovation, design innovation, and mainly cultural innovation are similarly underrepresented topics.

Based on the in-depth qualitative analysis of the **most relevant⁵ reviews**, the following topics and thoughts are widely discussed in the focal innovation areas⁶:

- The historical parts of eco-innovation studies often mention the Brundtland report from 1987 and the rapidly increasing scientific, social, and industrial attention toward environmental sustainability. Regarding economic aspects, circular economy development is considered to be the main driver of eco-innovation, regardless of the affiliation countries. Eco-design is also unequivocally mentioned as a tool for eco-innovation.
- Eastern and Western works approach technological innovation in different ways. While Western research clearly focuses on how to produce technological innovations in a business context (e.g., strategic ambidexterity), technological specifics are more emphasized among the most-cited Eastern review papers (e.g., artificial intelligence).
- 3. The Eastern business model innovation studies emphasize internal factors (e.g., knowledge management or organizational inertia), while the most influential Western review follows

⁵ Highly or most cited works which meet the thematic inclusion criteria

⁶ Again, these conclusions are related to most relevant reviews according to the scope of this working paper and do not generally describe Eastern and Western research.

Future Potentials Observatory

rather an **external approach** (sustainable business model building). Regarding social innovation, the most relevant reviews were written by authors of Western institutions.

4. Highly cited Eastern and Western reviews mostly disregard the topic of cultural innovation compared to the other focal innovation areas, however, there are at least a few studies which are more or less relevant in case of Western research. Eastern and Western research are similar in terms of the rareness of relevant design innovation reviews (in a cultural sense).

Three influential thoughts might be unexpected but universally relevant for decision-makers:

 Sustainability-oriented innovations for circular economy development⁷, cleaner production or eco-efficiency⁸ need not only eco-design but sustainability-rooted organizational behavior. However, this behavior cannot be based on a simple "switch" of the business model but on reaching different phases.

Policymakers can provide activating and motivating external stimulus to change the *resistant* state into *reactive* and *anticipatory*, moreover, support capability building to reach the *innovation-based* and *sustainability-rooted* state.

(Klewitz & Hansen, 2014)

 In contrast to the frequent industrial and institutional practice which emphasizes operational efficiency and productivity efforts for decades and still nowadays, process management can be even counterproductive and build resistance to change in a technologically complex context.

When incremental innovation is not enough, and radical innovation would be needed, limiting process management could be important to accelerate exploration instead of exploitation. (Benner & Tushman, 2003)

Ecological and technological aspects should not be argued only separately, but with an integrative approach based on business models, as it must go beyond the value proposition. For this purpose, technology-based sustainable business model archetypes can drive the transformation of organizations (e.g., creating value from waste or minimizing material use). (Bocken, et al., 2014)

⁷ By maintaining, reusing, recycling (Saidani, et al., 2019)

⁸ For lower environmental impact or economic gains (Klewitz & Hansen, 2014)

Directions for the next phases

Based on the theoretical iteration, transdisciplinary research and development, and the dynamic capabilities framework are both relevant approaches for governing innovation and design-related strategic change. In the focal innovation and design areas, possible directions of the recommendations (in the last phase) could include, for example,

- on the organizational level: Aligning business strategy with an impact vision, reconfiguration
 of business models following sustainable business model archetypes, leveraging external
 resources by open innovation and managing continuously evolving networks, initiating
 organizational changes, improving knowledge management practices.
- on policy level: Ecosystem building, developing shared meanings and taxonomies, transition management with broad societal discourse, inclusivity, co-production of solutions, according to broad techno-economic and societal aspects, encouraging the establishment of social enterprises for supporting local and regional development.

As **cultural innovation and design innovation** seem to be truly overlooked based on the results of this working paper, a **deeper analysis** of this area might be practical and also theoretically contributing during the next phases.

The in-depth analysis revealed more similarities than differences regarding the historical and economic aspects in the East-West context. It could be because of the nature of this meta-review, i.e., review papers usually merge thoughts from all over the world and try to provide a general understanding, so slight differences might emerge based on only the specific sub-topic selection. Consequently, **the next phase could focus on certain countries as "frontiers" of innovation and design horizons** from the perspective of Hungary, V4, and the Carpathian basin, with a more specific approach, building on the theoretical foundations of this first work. Accordingly, besides the most "Western" and "Eastern" countries, USA and China, other **economically prospering but culturally distinctive countries** are worth focusing on, for example, **Israel, Japan, South Korea, and India**.

Table of Contents

1.	Intro	duction	11
	1.1.	Project overview	11
	1.2.	Research background	12
	1.2.1.	. Strategic aspects of future potentials, innovation, and design	12
	1.2.2.	. Focal areas and research questions of the project	14
	1.2.3.	. Self-reflection by the list of key definitions	15
	1.3.	Scope of this working paper	16
	1.3.1.	Objectives and scope	16
	1.3.2.	Objectives out of scope	17
	1.3.3.	. Research questions of this working paper	17
2.	Resea	arch framework	19
	2.1.	Theoretical perspectives	19
	2.1.1.	. Perspective for innovation and design – Transdisciplinarity	19
	2.1.2.	. Perspective for governing strategic change – Dynamic capabilities	20
	2.1.3.	Framework synthesis	22
	2.2.	Methodology	23
3.	Resul	Its and discussion	25
	3.1.	Overview of the results	25
	3.2.	Innovation definitions and viewpoints	31
	3.3.	In-depth analysis of strategic and change aspects	33
	3.3.1.	Ecological and energy innovation and design	33
	3.3.2.	. Technological innovation (non-eco and non-energy)	41
	3.3.3.	Social and business model innovation	49
	3.3.4.	. Cultural innovation and design	57
4.	Concl	lusions	61
	4.1.	MQ I: The relevance of the focal innovation and design areas	61
	4.2.	MQ II: Similarities and differences in East/West context	61
	4.2.1.	. SQ 1: Ecological and energy innovation	62

Future Potentials Observatory

6.	Refe	rences
5.	Арре	ndix67
	4.4.	Limitations and next phase
	-	tive
	4.3.	MQ III: Initial directions of recommendations from the transdisciplinary and the dynamic capabilities
	4.2.4	. SQ 4: Cultural innovation63
	4.2.3	. SQ 3: Social and business model innovation62
	4.2.2	. SQ 2: Technological innovation62

List of Figures

Figure 1. Distribution of the most cited review papers according to the affiliation countries
Figure 2. The most influential countries in the focal innovation areas, according to the affiliation
countries of 100 top-cited review papers
Figure 3. Distribution of the 100 top-cited review papers according to their innovation area
Figure 4. Distribution of the top-cited reviews according to innovation areas and East-West
categorization
Figure 5. Relevant research fields of the focal innovation areas
Figure 6. Interpretation of the strategic sustainability behaviour development from a change
management perspective
Figure 7. Eco-innovation by innovation ecosystem building for food waste recovery and industrial
symbiosis
Figure 8. Structure and tools of CE development
Figure 9. Technological innovation from the aspect of strategic ambidexterity
Figure 10. Perspectives of Machine Learning in materials research
Figure 11. Factors behind technological innovation performance and related governance tasks 46
Figure 12. Sustainable business model archetypes and examples51
Figure 13. General and firm-size specific factors of business model innovation
Figure 14. Knowledge management for business model innovation53
Figure 15. The role of social enterprises in sustainable, local and regional development

List of Tables

Table 1. Strategic approach to the research 13
Table 2. Focal innovation areas of the research 14
Table 3. Research questions of the project
Table 4. Conceptual model of transdisciplinary research 19
Table 5. The dynamic capabilities framework
Table 6. Theoretical perspectives of this work to analyze innovation, design, and strategic change 22
Table 7. Potentially relevant studies in the focal areas, including original research and review papers
as well
Table 8. Definitions or viewpoints of the focal innovation areas from the literature 32
Table 9. El process, specificities and related governance tasks
Table 10. El technology development dimensions 38
Table 11. Historical and economic aspects of ecological and energy innovation and design research 40
Table 12. Phases, steps, topics and governance tasks of leveraging external resources for open
innovation
Table 13. Change directions to foster technological innovation 43
Table 14. Al scenarios in education and potential operational changes by technological innovation. 45
Table 15. Historical and economic aspects of technological (non-eco-, non-energy) innovation and
design research
Table 16. Transition management as a tool for sustainable development and long-term policy design
Table 17. Responsible innovation principles, practices and change drivers within organizations 50
Table 18. Historical and economic aspects of social and business model innovation and design research
Table 19. Design innovation and technological innovation of multi-life-cycle products
Table 20. Historical and economic aspects of cultural innovation and design research
Table 21. Suggestions based on the literature for strategic change in the focal innovation areas, from
the transdisciplinary and the dynamic capabilities perspectives

1. Introduction

1.1. Project overview

This working paper is based on the mission of the FUTURE Potential Observatory which aims to investigate, analyze, and present

- a) the future potential of social entities, such as families, organizations, cities, countries,
- b) geopolitical frontiers, and
- c) innovation and design horizons

in an East-West context, with a special focus on Hungary. These points represent thematically interconnected but separate research projects.

Accordingly, three working papers focus on the innovation and design horizons, as separate parts of the project. The structure of the research process is the following:

1. Historical/Economic aspects of innovation and design horizons in East-West context research (the scope of this working paper)

Highlighting key characteristics based on a systematic literature review of historical and economic aspects of innovation and design horizons in the East-West context, highlighting the role of Hungary, the Carpathian basin and V4 countries

2. Innovation and Design Horizons Map research

Associating key drivers of innovation and design horizons to key historical and economic characteristics in the East-West context, creating a map of these drivers across geopolitical, industry and policy dimensions

3. Forecasting new Innovation and Design Horizons

Forecasting new innovation and design trends based on the innovation and design horizons map, as well as additional relevant international scientific literature. Highlighting the role of Hungary, the Carpathian basin and V4 countries.

The main goal of the Innovation and Design Horizons research and its three phases is to provide insightful decisions preparation material for policymakers by which they can contribute to previously defined areas⁹ of fundamental human goods.

While this working paper, as the first part of this research, focuses on review papers (i.e., providing a meta-review for initial understanding, orienting next tasks), the second part covers original research

⁹ Peace and safety, attachment, care, and balance (Szántó, et al., 2020)

articles through mapping (i.e., trends and opportunities), and the third part will provide detailed recommendations, mainly for Hungary.

This document is structured as follows. In the remaining parts of the Introduction, the background of the research, objectives, and research questions will be elaborated. Section 2 argues the research framework with the theoretical perspectives which orient the discussion of the results, and the followed methodology. After that, results of the historical and economic aspects of innovation and design areas are presented and discussed. Finally, research questions are answered, moreover, limitations and directions for the next phase are highlighted.

1.2. Research background

1.2.1. Strategic aspects of future potentials, innovation, and design

Future potentials research is based on its antecedent research concept, i.e., social futuring which is a multidisciplinary concept related to several fields, such as philosophy or sociology (Szántó, et al., 2019). As detailed in one of the key works of this research area, *"social futuring is the very feature of an arbitrarily chosen social entity that expresses its potential, ability and competence (1) to interpret, envisage, influence, and generate future changes, and (2) to prepare for their strategic treatment – that is, await the challenges that stem from any changes (be they limits/ opportunities or threats) in a state of full preparedness" (Szántó, 2018, p. 6).*

Social futuring has also a normative frame, i.e., a good, fulfilled life, and integrates strategic elements from other concepts, such as resilience, future orientation, and. future proofing. These strategic elements include, for example, existence-sustainability, active behavior, a vision, future scenarios, or planning strategic actions (Aczél, 2018). From this strategic perspective, there are three basic forms of social futuring:

- 1. Proactive: Strategic creativity
- 2. Active: Strategic resiliency
- 3. Reactive: Strategic adaptivity. (Szántó, 2018)

These strategic orientations are also emphasized in the holistic concept of future potentials, approaching *"the strategic management of future change"* as a tool to reach the fundamental goals, i.e., to preserve a good life in a unity of order (Szántó, et al., 2023, p. 8).

Based on the above, "strategy" and "change" seem to be two of the main keywords of future potentials, and these are also closely related to the scope of this work. Specifically, the field of strategic management and change management is rich in scientific studies on renewal which affect innovation and design activities and vice versa. First, it is because innovation is mostly associated with novelty, change, learning, development and value creation (Baregheh, et al., 2009). Second, on the one hand, the design of a product, a system, or an institution is usually oriented by strategic aspects (e.g., organizational/societal vision and end-user/societal needs), but on the other hand, there is a growing importance of design in strategic-decisions making, for example, through design thinking; and strategic management is sometimes considered to be an "art" (Knight, et al., 2020).

The integrated strategic management of innovation and design is also deeply elaborated by Le Masson et al. (2010). Following a business and economic perspective, the authors argue that

- a) one should talk about "intensive innovation" which is systematic, repeated, and oriented (i.e., not random and episodic);
- b) this intensive innovation is a major driving force of contemporary capitalism and affects international economic competition in the future;
- c) intensive innovation requires a transition from research and development (R&D) to research, innovative design, and development (RID), which generates change within organizations and its economic, social, and ecological impacts (Le Masson, et al., 2010).

Based on the above, this research follows a strategic management approach, i.e., considering external and internal factors before a strategic recommendation; and looks at innovation and design integratively, as a future source of sustainable competitive advantage at organizational, national or regional level (Table 1).

		External trends, critical success factors	Valuable	internal	capabilities,
			differentia	tion opportu	nities
Analyses a	and	Similarities and differences of certain	Unique res	ources and o	pportunities in
discussions		types of innovation and design activities in	Hungary, th	ne Carpathiai	n basin and V4
		the Eastern (e.g., China, India) and the	countries ir	n certain type	s of innovation
		Western (e.g., USA, EU) worlds / cultures	and design	activities	
Recommendations	;	Strategic change directions for facilitating in	nnovation an	d design in th	ne focal region:
		Policy, institutional, research, and corporat	e actions		

Table 1. Strategic approach to the research

Source: authors

1.2.2. Focal areas and research questions of the project

Based on the expectable changes and pillars which are relevant to future potentials (Szántó, et al., 2023), this research focuses on different areas of innovation and design according to the key pillars of the future-potential-related strategic fields, as detailed in Table 2. While these innovation areas can be analyzed separately, multiple interconnections could be also relevant in the literature, for example, green transformation (Csedő & Zavarkó, 2020; Magyari, et al., 2022), artificial intelligence (Mariani, et al., 2023; Di Vaio, et al., 2020), or digitalization and ICT in different sectors for positive economic (Csedő, et al., 2019a) or social impacts (Pörzse, 2008; Pörzse, 2011; Sára, et al., 2013).

The definitions of the specific innovation areas (e.g., eco-innovation) are in the scope of the systematic literature review (see Section 3.2).

Content of expectable changes (Szántó, 2018)	Innovation and design area
Ecological – (geo)political	Eco- and energy- innovation and design
Technological	Technological innovation and design (non-eco and non-energy)
Socio-economic	Social and business model innovation and design
Cultural – spiritual	Cultural innovation and design; design innovation

Table 2. Focal innovation areas of the research

Source: authors

Based on the three-phase structure of the research and the four innovation areas, a matrix is developed with twelve questions (Table 3).

Appro	ach	Research questions and	sub-questions (SQ)		#
U	Fundamental	What similarities and	ecological and energy	innovation	1
History and current economic	external	differences could be	technological	and design research?	2
ecol	factors	the dominant Mapping &	social and business model		3
rent			cultural		4
and current e	Mapping &		ecological and energy		5
y and	resources and resources and resources and		technological		6
		social and business model	 and design 	7	
Ē	drivers)	opportunities for	cultural	— activities?	8
<u>.</u>		What policy,	ecological and energy		9
Recommen- dations	Governance institutional, research,	technological	innovation	10	
econ dati	actions	and corporate actions	social and business model	and design?	11
ř		could facilitate	cultural		12

Table 3. Research questions of the project

Source: authors

1.2.3. Self-reflection by the list of key definitions

Most of the underlying definitions of this work derive from the field of business and management, more specifically, the resource-based view of the firm (See Section 2.1.2 for details and justification). This approach brings significant novelty into socio-economic research of this area, due to the small extensions which enable to use the definitions in a broader context.

In this work, the following definitions shaped the analysis and the discussion:

- a) *Innovation* is "the implementation of a new or significantly improved product (good or service), or process, a new marketing method, or a new organisational method in business practices, workplace organisation or external relations" (OECD, 2005, p. 46).
- b) Design, from an innovation perspective, covers "thought processes, such as intuition, analysis, framing, abductive reasoning generative sensing, and mental simulation" which interact with strategic purposes, culture, and externalized understandings (of the market) (Knight, et al., 2020, p. 36).
- c) *Strategic change* is the "change in the fundamental pattern of present and planned resource deployments" (Hoppmann, et al., 2019, p. 437)

Future Potentials Observatory

- d) Strategic management "typically involves the formulation and execution of plans relating to the establishment and deployment of assets¹⁰" to "match its capabilities to its ever-changing environment if it is to attain its best performance" (Teece, 1984, p. 87).
- e) Innovation management covers tasks related to "innovation strategy, external intelligence¹¹, idea management, product portfolio management, technology portfolio management, development and launch, post-launch activities (e.g., project learning), resource and competence management" (Tidd & Thuriaux-Alemán, 2016, p. 1024).
- f) Change management aims "to become more effective at achieving the goals¹² in the face of internal and external opportunities and threats" [...] by finding the proper "response at individual, group or system level, although these levels cannot be seen in isolation from each other". (Burnes, 2017, p. 29)
- g) Governance means "leadership systems, control protocols, property rights, decision rights, and other practices that give their authority and mandates for action"¹³ (Tihanyi, et al., 2014, p. 1535).

1.3. Scope of this working paper

1.3.1. Objectives and scope

This working paper analyses the relevant innovation and design areas based on Eastern and Western research and establishes the theoretical foundation for the mapping in the second phase, which will be followed by recommendations in the third phase.

The relevant innovation areas are defined based on the previous lessons of social futuring research and the new future potentials index. The main assumption of this working paper is that the four innovation areas indeed appear in the international scientific literature.

Objectives of this working paper are the following:

- 1. Confirm or reject the main assumption regarding the relevance of the innovation areas
- 2. Explore the most influential topics and thoughts from Western and Eastern research in these innovation areas
- 3. Re-interpet them from the theoretical perspectives (detailed in Section 2.1).

¹⁰ In the original text: "...of a **firm's** assets"

¹¹ In the original text: "...external **business** intelligence..."

¹² In the original text: "...the goals of the **organization**..."

¹³ In the original text: "...managerial control protocols..." and "...give organizations their..."

1.3.2. Objectives out of scope

In line with the objectives listed above, first, this working paper does not aim to explore concrete innovation and design activities, nor general similarities and differences of historical and/or current Eastern and Western innovation and economic subjects, but instead, focuses on influential Western and Eastern thought patterns which might help decision-makers to identify the directions of the everchanging internal and external environment, manage threats, and seize opportunities to increase the volume of human goods.

Second, as this is only the first part of the research process with time and volume constraints, this work does not aim to provide an exhaustive and overarching literature review on every pre-defined innovation and design area. Instead, it aims to provide a brief overview of the key topics, moreover, explore and (re-)interpret the most influential (i.e., some of the most cited and also thematically relevant) theories and thoughts to accelerate further analyses for policymaking.

Third, given the practical purpose of the working paper (supporting future policymaking on institutional and corporate levels), it does not aim to be value-neutral regarding the fundamental goals (contributing to human goods), nor the research approach (future potentials and governing strategic change in the future). Instead, this work uses scientifically established theoretical concepts and methodologies to support practical goals and reflects on its own assumptions, in line with the requirements of qualitative research. Outlining and fulfilling relevant scientific research gaps, and providing theoretical contributions, however, will be important in case of another research outcome.

1.3.3. Research questions of this working paper

Based on these objectives, there are three main questions (MQ) of this working paper:

MQ I: Are the pre-defined innovation areas indeed relevant based on the literature?

MQ II: What similarities and differences could be identified in the East-West dichotomy regarding the dominant research in the focal innovation and design areas?

Sub-questions (see Table 3):

SQ1: What similarities and differences could be identified regarding the dominant *ecological and energy* innovation and design research?

SQ2: What similarities and differences could be identified regarding the dominant *technological* innovation and design research?

SQ3: What similarities and differences could be identified regarding the dominant *social and business model* innovation and design research?

SQ4: What similarities and differences could be identified regarding the dominant *cultural* innovation and design research?

MQ III: How can one (re-)interpret the influential thoughts of these innovation and design areas from key theoretical perspectives of strategic change to support policymaking?

2. Research framework

2.1. Theoretical perspectives

2.1.1. Perspective for innovation and design – Transdisciplinarity

To solve real-world problems, involving stakeholders and facilitating collaborative research and development of new solutions are increasingly emphasized within the transdisciplinary view. Transdisciplinary research principles are related to previously elaborated Mode 2 research (e.g., knowledge production for practical and contextual application for managerial problem-solving (MacLean, et al., 2002)), or more recently, sustainability science (Belcher, et al., 2019). Consequently, the transdisciplinary approach is inherently relevant in case of multiple pre-defined innovation areas (e.g., ecological innovation for environmental sustainability, social innovation and cultural innovation for social sustainability, business model innovation and technological innovation for economic sustainability). Lang et al. (2012) developed a framework (Table 4) for an ideal-typical transdisciplinary research process based on prior research, and the following definition:

"Transdisciplinarity is a reflexive, integrative, method-driven scientific principle aiming at the solution or transition of societal problems and concurrently of related scientific problems by differentiating and integrating knowledge from various scientific and societal bodies of knowledge." (Lang, et al., 2012, pp. 26-27)

Social practice	Transdisciplinary research process	Scientific practice
Societal problems (actor-specific, relevant)	Phase A "Collaboratively framing the problem and building a collaborative research team"	Scientific problems (e.g., lack of methods)
↑ Actor specific societal discourse (e.g., institutions)	↓ Phase B "Co-producing solution-oriented and transferable knowledge through collaborative research"	★ Scientific discourse (e.g., industrial research)
П	↓ Phase C	II
Results useful for societal practice	← → "(Re-)integrating and applying the	Results relevant for scientific practice
(e.g., prototypes)	produced knowledge in both scientific and societal practice"	(e.g., new research questions

 Table 4. Conceptual model of transdisciplinary research
 Image: Conceptual model of transdisciplinary research

Source: re-created based on Lang et al., 2012, p. 26-27

Given the research-focused nature of the transdisciplinary nature, this perspective might be more applicable for innovation and design-related policymaking and operative levels. Consequently, the next section presents a theoretical perspective for driving change from a strategic and organizational perspective.

2.1.2. Perspective for governing strategic change – Dynamic capabilities

There is a broad consensus in the strategic management literature that in a rapidly changing environment, the ability to innovate and change is a critical success factor for organizational survival or competitive advantage (Csedő & Zavarkó, 2019a). This statement is even more relevant in an era of rapid technological and geopolitical change. The literature has also shown that innovation and change are interrelated, and organizations need to not only operate effectively in their current business areas but focus on exploration and new opportunities (Duncan, 1976; March, 1991). The balance between exploitation and exploration is critical mainly because of the adaptation paradox (Csedő, et al., 2019b), i.e., the more an organization adapts its current environment, the less it will able to adapt to the changes of the future (Burgelman, 1991), i.e., although routines and practices for strong optimization are useful for the present, they might threaten the adaptation capability for the future. One key challenge for this strategic ambidexterity is that exploitation and exploration compete for the same resources and also require opposing practices (e.g. efficiency requires strict regulation, while exploration requires agility and flexibility) (Gibson & Birkinshaw, 2004). Moreover, path dependency makes it difficult for organizations to deviate from the well-known path, in which they have invested a lot of resources (Sydow, et al., 2009). Consequently, strategic (exploitation and exploration), structural (stability and flexibility), and capability-based dilemmas (leveraging existing capabilities and developing new ones) determine the context of change management (Csedő & Zavarkó, 2019b).

Nevertheless, enabling renewal continuously or from time to time is a critical task in a turbulent and uncertain future environment (cf.: future potential). The appropriate strategic approach could be the resource-based view (RBV). According to the historical aspects of RBV, resource position barriers also exist besides entry barriers (Wernelfelt, 1984), and sustained competitive advantage could be built on valuable resources rather than (only) market positioning (Barney, 1991). While one part of the literature explored the opportunities of tangible and intangible resources in gaining a sustainable advantage in a turbulent environment (Grant, 1996), other studies oriented the attention to precisely differentiate resources from capabilities (Helfat & Peteraf, 2003). Furthermore, separating operational and dynamic capabilities (Teece, et al., 1997) gave additional emphasis on environmental adaptation (Guesalaga, et al., 2018). In contrast to the Porterian strategic approach, the RBV suggest that in a turbulent environment, using and developing valuable, resources could mean a more stable basis for

strategy formulation than only market positioning (Barney, 1991). Moreover, the relationship between the organization (as an open system) and the external environment is bilateral, i.e., organization performance (e.g., an innovation) could impact the external conditions (Teece, 2007).

According to the most dominant approach of the RBV, the dynamic capabilities framework, organizations need capabilities for sensing, seizing, and transforming (Teece, et al., 1997). Table 5 presents the theoretical and practical aspects of this framework.

Capability	Core element	Main factors (examples)
Sensing	Analytical systems	Selection of internal R&D processes and technologies
	and individual	Identifying complementary skills and innovations of partners
	capabilities to learn,	and suppliers
	detect, filter and	Monitoring changes in consumer behaviour and market needs
	shape opportunities	Monitoring external technological and scientific results
Seizing	Organizational	Business modelling
	structure, processes,	Decision bias, avoiding errors, identifying complementary
	incentives	capabilities
		Resource development, specialization (matching
		complementary skills to increase their combined value)
		Increasing commitment, leadership, culture shaping
Transforming,	Co-specialization and	Knowledge management, knowledge transfer, know-how
reconfiguring,	recombination of	integration
continuous	resources	Corporate governance: align incentives, minimize agency costs
renewal		strategically responsible management, conscious use of profits
		(to invest in the future)
		Decentralization, promoting open innovation, developing
		integration and coordination capabilities
		Control the strategic fit (value creation) of resource
		combinations

Table 5. The dynamic capabilities framework

Source: Csedő & Zavarkó, 2021, based on Teece, 2007

As the Table shows, governance could have an impact on building dynamic capabilities. Empirical research has also shown that dynamic capabilities contribute to the development of performance differences between firms. It was also found that the adaptive capacity of organisations is strongly

Potentials

influenced by corporate governance structure, resource allocation process and management incentive system. (Pisano, 2017)

Finally, it is also worth noting that not only the organisation but also the governance system itself must be dynamic enough to adapt to changes in the environment and the company at its own level (e.g., more decision-makers may be needed as the organization grows, more intensive committee work may be needed in turbulent environments). Dynamic governance, therefore, could mean not only ensuring that the organization adapts to the environment but also that the governance system itself (e.g., the functioning of the boards) adapts to changing environmental circumstances (Hoppmann, et al., 2019; Csedő & Zavarkó, 2021).

2.1.3. Framework synthesis

Based on the above, transdisciplinarity and the dynamic capabilities framework could offer insightful theoretical perspectives and a basis for practical suggestions with different focus points and levels. Table 6 compares the two perspectives which complement each other.

	Transdisciplinarity	Dynamic capabilities	
Focus	Designing and implementing research,	Sensing and seizing opportunities, managing	
	development, and innovation by	threats, transforming the organizational /	
	participation, stakeholder engagement,	institutional system according to new	
	collaborations, for societal goods	conditions, for sustained competitive	
		advantage / survival	
Dominant	Outside-in	Inside-out	
approach	(e.g., finding and solving real-world	(e.g., building and using valuable	
	problems)	capabilities)	
Dominant change	Bottom-up	Top-down	
direction	(e.g., emphasizing stakeholder	(e.g, the role of leadership in sensing	
	involvement)	changes and re-allocating resources)	
Levels of	Operative / Micro	Strategic / Macro	
problems and	(e.g., concrete social and scientific	(e.g., the threat of environmental misfit)	
solutions	problems)		
The main area for	Institutional policymaking	Corporate decision-making	
practical			
suggestions			

Table 6. Theoretical perspectives of this work to analyze innovation, design, and strategic change

Source: authors

2.2. Methodology

The research is based on a Systematic Literature Review (SLR). During SLR, a research question is answered or a hypothesis is confirmed/rejected by collecting relevant previous studies on the specific field that meets the pre-defined inclusion criteria (Snyder, 2019) SLR methods are often used in management research, as well (Hiebl, 2021). Based on the recommendations in the literature (Okoli, 2015; Fisch & Block, 2018; Thomé, et al., 2016), the SLR process was the following:

- 1. Developing a research protocol: fixing the research focus points (innovation areas)
 - a. Searching literature in electronic database: Web of Science (WoS)
 - b. Looking for and reviewing articles, as they might contain historical and economic perspectives, i.e., presenting a meta-review
- 2. Assign search keywords for the focal areas¹⁴ as the topic¹⁵ of potentially relevant studies
 - a. Ecological and energy innovation
 - i. "eco-innovation"
 - ii. "ecological innovation"
 - iii. "energy innovation"
 - b. Technological innovation (non-eco and non-energy)
 - i. "technological innovation"
 - ii. Filtering out the eco- and energy-related research categories, such as Environmental Sciences, Energy Fuels, Environmental Studies, Green Sustainable Science Technology
 - c. Social and business model innovation
 - i. "social innovation"
 - ii. "business model innovation"
 - d. Cultural and design¹⁶ innovation
 - i. "cultural innovation"
 - ii. "design innovation"
- 3. Categorizing relevant articles by the authors' affiliation: East / West / Other¹⁷ / Global¹⁸

¹⁴ In line with the theoretical background, the SLR method approaches *design* as part of the broader *innovation* process (e.g., as shown by Tidd & Thuriaux-Alemán (2016) who concerns "development and launch" as an innovation management practice)

¹⁵ In case of WoS, the Topic-focused search covers the title, the keywords, and the abstract

¹⁶ The "design innovation" was added because of (1) the very low number of studies, the topic of which was related to "cultural innovation" and (2) the frequent interconnection between design and culture terms (Knight, et al., 2020)

¹⁷ "Other" countries are not unquestionably related to the "Western world" or the "Eastern world" according to the work of Huntington (1991) – E.g., Latin America or the Orthodox World

¹⁸ The co-authors of certain articles are affiliated with Eastern and/or Western and/or Other countries

Future Potentials Observatory

- 4. High-level quantitative analyses
- 5. Citation-based prioritizing, i.e., finding the most influential studies which might shape the present and future thoughts on innovation and design
- 6. Content-based filtering by title and abstract, focusing on
 - a. Design aspects ("design") AND/OR
 - b. Economic aspects ("econom*)¹⁹
 - c. Relevance (i.e., disregarding too narrow technical topics, including studies which (can) have interconnections with future potentials, innovation and design, or strategic change)
- In-depth qualitative analysis according to the following aspects: History, economy, design, strategic change
- 8. Interpretation of the results from the aspect of the research questions

¹⁹ Historical aspects are implicitly considered in review articles

3. Results and discussion

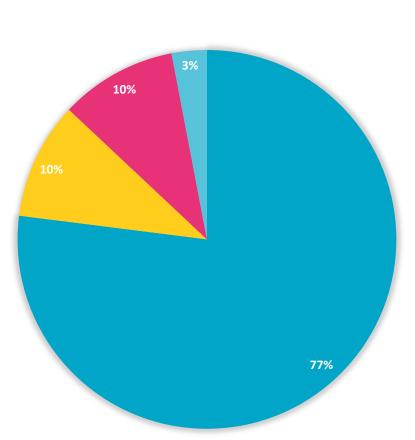
3.1. Overview of the results

Based on the WoS database, there are almost 30.000 studies which are related at least to one of the four innovation areas. Table 7 shows that there are only ca. 12.000 studies which could be relevant based on the inclusion criteria.

	Search keywords and innovation areas	TOTAL	Since 2000 & Tech. filter: non-eco&energy-related fields
I/1.	Ecological innovation	171	50
I/2.	Eco-innovation	2 371	1 016
I/3.	Energy innovation	456	145
I.	Eco- and energy innovation area	2 998	1 211
II/1.	Technological innovation	18 173	812
II.	Technological innovation area	18 173	7 812
III/1.	Social innovation	3 851	1 332
III/2.	Business model innovation	2 231	1 502
III.	Social and business model innovation area	6 082	2 834
IV/1.	Cultural innovation	384	58
IV/2.	Design innovation	931	288
IV.	Cultural and design innovation area	1 315	346
	Total	28 568	12 203

Table 7. Potentially relevant studies in the focal areas, including original research and review papers as well

Source: authors


The overview of the search results provides an initial insight about the more dominant and less dominant topics:

- a) Technological innovation is the most dominant area while cultural and design innovation is underrepresented.
- b) In case of the first area, eco-innovation is more apparent than energy innovation.
- c) In the third area, social innovation and business model innovation seems to be similarly important.
- d) In the fourth area, cultural innovation studies are rare, while design innovation is more frequent.

These initial findings also shape the relevance-based filtering for the in-depth analyses of review studies (e.g., ecological versus energy innovation).

Nevertheless, from ca. 12.000 studies, only ca. 900 studies were review papers. As the research focuses on the most influential Eastern and Western articles, the 100 top-cited reviews were analyzed according to the affiliation countries and research fields. Figure 1 shows the distribution of the top 100 reviews according to the East-West categorization. A detailed list of the studies and the categorization can be found in the Appendix. The Figure shows that 77% of these articles were written by authors of Western research institutions, while 10%-10% were Eastern and Global (co-authorship from heterogenous countries), and 3% was Other countries' research (e.g., Chile).

■ West ■ East ■ Global ■ Other

Source: authors

Based on the number of authors in case of the top-cited review papers in the focal innovation areas, Figure 2 shows that the most influential countries are USA and England.

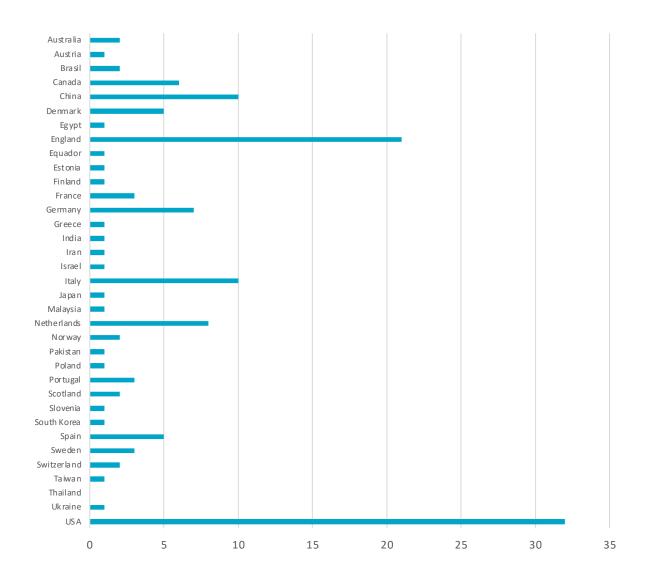


Figure 2. The most influential countries in the focal innovation areas, according to the affiliation countries of 100 top-cited review papers

(the total number is higher than 100 (140) because of co-authorships)

Source: authors

Regarding the innovation areas, the most dominant area is technological innovation (59%), even by filtering out the eco- and energy-related fields from its list. Another important finding is that only 3 papers belong to the cultural or design innovation topic from the top 100 reviews (Figure 3), which is in line with their underrepresented nature in the total number of studies.

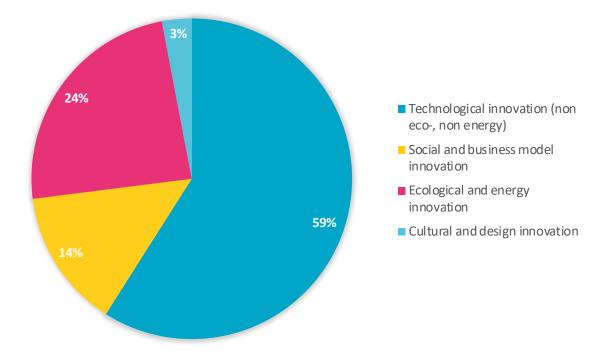


Figure 3. Distribution of the 100 top-cited review papers according to their innovation area Source: authors

Based on the matrix of the East-West categorization and the innovation areas, Figure 4 shows that Western research institutions are more influential than other parts of the world.

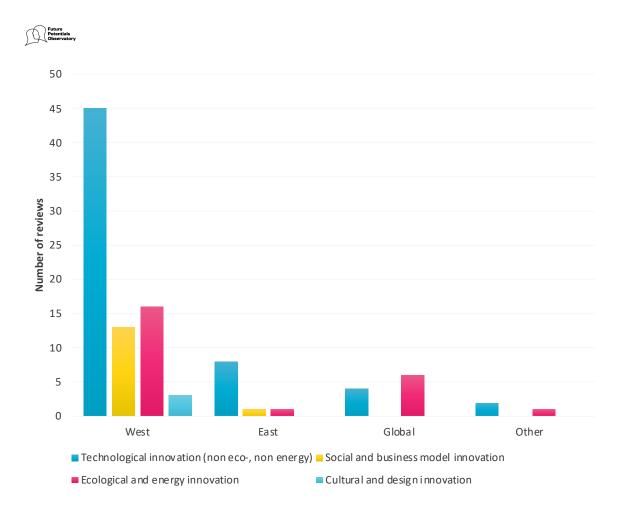


Figure 4. Distribution of the top-cited reviews according to innovation areas and East-West categorization Source: authors

Nevertheless, more specific insights can be gained based on research fields (i.e., WoS categories). Figure 5 shows that 44 different research fields are relevant in case of the top 100 reviews, from which Business, Economics, Engineering, Engineering-Environmental, Environmental Sciences, Geography, Green & Sustainable Science & Technology, Industrial, Management, and Transportation appeared in case of the 10 top-cited reviews.

Business	Agronomy	Argiculture, Multi- disciplinary	Behavioral Sciences
Biochemistry & Molecular Biology	Biology	Chemical	Chemistry, Multi- disciplinary
Chemistry, Physical	Communication	Computer Science, Artificial Intelligence	Construction & Building Technology
Developmental Biology	Economics	Energy & Fuels	Engineering
Engineering, Civil	Engineering, Electrical & Electronic	Engineering, Environmental	Engineering, Multi- disciplinary
Environmental Sciences	Food Science & Technology	Genetics & Heredity	Geography
Geosciences, Multi- disciplinary	Green & Sustainable Science & Technology	Industrial	Information Systems
Management	Materials Science, Biomaterials	Materials Science, Multi- disciplinary	Nanoscience & Nanotechnology
Neurosciences	Operations Research & Management Science	Pharmacology & Pharmacy	Polymer Science
Psychology, Applied	Psychology, Experimental	Public Administration	Regional & Urban Planning
Reproductive Biology	Social Sciences, Interdisciplinary	Telecommunications	Transportation

Figure 5. Relevant research fields of the focal innovation areas

(research fields of the top 10 reviews with blue background)

Source: authors

3.2. Innovation definitions and viewpoints

Table 8 presents a list of the definitions or viewpoints of the focal areas and related search terms, i.e., ecological (or eco-)innovation, energy innovation, technological innovation, social innovation, business model innovation, cultural innovation, and design innovation.

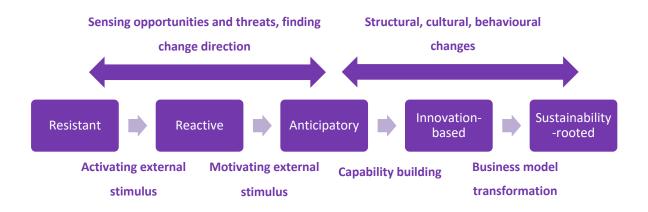
Innovation and design area	Definition / Viewpoint	Source
	"Eco-innovations represent new or enhanced processes,	
	organizational forms, as well as products or technologies that are	(Klewitz & Hansen,
Ecological innovation & Energy innovation	beneficial to the environment in that they reduce or avoid negative environmental impacts"	2014, p. 58)
	"El is defined as a process realized by a number of "actors", "actions" and "audiences" which takes into consideration that	(He, et al., 2018, p. 504)
	there are multiple stakeholders involved, including the government, public, media, environmental organizations, shareholders, suppliers, customers, employees, etc."	
	"With increasing competitiveness of renewable and clean energy, there is growing opportunity to leverage clean energy innovation as a step towards a low carbon future."	(Jordaan, et al., 2017 p. 1406)
Technological innovation	"Technological innovation is the central engine of organizational adaptation."	(Benner & Tushman, 2003, p. 242)
	"Following the Oslo Manual's lead, we defined innovation as 'implemented technologically new products and processes and significant technological improvements in products and processes.' (1997: 31)"	(Becheikh, et al., 2006)
	"The technological innovation of <i>Chinese</i> firms has become one of the critical engines driving this [rapid economic] development."	(Yang, et al., 2012, p 820)

Cont.

Innovation and design area	Definition / Viewpoint	Source
	"The focus of policy is towards creating options and exploring paths of societal development, social innovation, as it were, rather than planning and then implementation."	(Voß, et al., 2009, p. 281)
Social innovation	"The term is used as synonymous for intended and unintended social change, while it is used as a synonym for intangible innovations as well"	(Lubberink, et al., 2017, p. 5)
& Business model	"Business model innovation offers a potential approach to deliver the required change through re-conceptualising the purpose of the firm and the value creating logic, and rethinking	(Bocken, et al., 2014, p. 43)
innovation	perceptions of value." "Business model innovation is seen as a new source of innovation which is different from the product, process and organizational innovation."	(Bashir & Farooq, 2018, p. 363)
Cultural innovation	"Cumulative culture describes the capacity to accumulate cultural innovations in successive generations, with each new generation learning from and adding to the previous generations' cultural knowledge"	(Mesoudi & Whiten, 2008, p. 3494)
&	"The exchange of cultural information between divergent groups may have facilitated the emergence of cultural innovation."	(Ackermann, et al., 2016, p. 1)
Design innovation	"Design innovation is a key driver to success in the current competitive market by substantially improving product design and features to delight customers' expectations."	(Suhariyanto, et al., 2017, p. 678)

Table 8. Definitions or viewpoints of the focal innovation areas from the literature

Source: authors



3.3. In-depth analysis of strategic and change aspects

3.3.1. Ecological and energy innovation and design

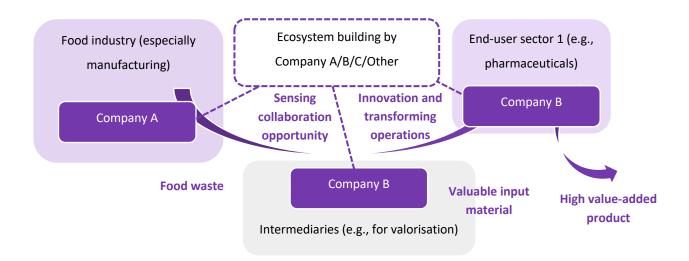
The starting point of Klewitz and Hansen's highly cited work (2014) is that the term sustainable development was first mentioned in 1972 at the United Nations Conference on the Human Environment, while innovation for sustainability has gotten increasing attention since the publication of the Brundtland report in 1987. This report was focusing on creating, redesigning, adapting and diffusing environmentally beneficial technologies by firms. This emerging trend, first, was concerned about mainly environmental (i.e., ecological) aspects, which brought eco-design into the scope of product innovators, moreover, "environmental issues were recognized as sources of strategic change" (p. 57). Later, however, sustainability-oriented innovations (SOIs) appeared which cover not only environmental, but social and economic dimensions. Accordingly, the suggested strategic behaviour of small and medium-sized enterprises is to follow a sustainability-rooted strategy which integrates economic, environmental, and social aspects in their core business, with the goal of market transformation and radical innovations, enabled by the strong interaction with external actors. Nevertheless, according to the authors, this requires the transition of the behaviour from a resistant, reactive, anticipatory, or innovation-based state (Figure 6) (Klewitz & Hansen, 2014).

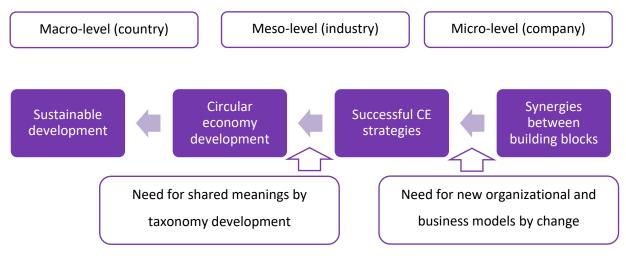
From a strategic change perspective, this would involve sensing the entrepreneurial opportunity, organizing the capacity building and transforming the organization according to a new business model.

Figure 6. Interpretation of the strategic sustainability behaviour development from a change management perspective Source: authors, based on Klewitz & Hansen, 2014, extended

Regarding industrial aspects, the food industry is an important area of eco-innovation, as Mirabella et al. (2014) argue that food waste is relevant in developed countries through the total food life cycle, i.e., agriculture, food-manufacturing, food retail and household consumption. The highest percentage of food waste production is in the case of households (42%) and during manufacturing and processing (39%). In the latter case, eco-innovation must focus to support the development of a circular or a zero-waste economy and society. This goal could be achieved by new production systems, e.g., biorefineries and industrial symbiosis "in which the goal is to use wastes from one sector as an input for other sectors" (Mirabella, et al., 2014, p. 29). The authors highlight that mainstream sectors, such as the pharmaceutical industry could be the potential area of waste recovery. Nevertheless, further processing is needed before using food waste in another sector, which induces costly research and development. Consequently, mostly high-value-added products could be economically feasible, but the involvement of several stakeholders (e.g., producers, technology developers / intermediaries, and end-users) is also needed.

Based on the above, food waste recovery-aimed eco-innovation might require an innovation *eco(-*)*system* of interested parties which must go beyond not only organizations but sectors for industrial symbiosis. Innovation ecosystem building, however, needs ecosystem builder organizations the directors of which engage boards of other organizations to collaborate based on a promising opportunity (Figure 7).




Figure 7. Eco-innovation by innovation ecosystem building for food waste recovery and industrial symbiosis Source: authors, based on Mirabella et al., 2014, extended

Potentials

Regarding the development of the circular economy (CE), Saidani et al. (2019) reviewed the existing CE indicators and suggested a taxonomy which might accelerate a common understanding among stakeholders, including academia and industry as well. Their taxonomy for the CE indicators includes 10 categories, which also illustrate what aspects were concerned during indicator set development to date (n=55):

- 1. Level: micro, meso, macro
- 2. Loops: maintain, reuse, recycle
- 3. Performance: intrinsic, impacts
- 4. Perspective: actual, potential
- 5. Usages: improvement, benchmarking, communication, etc.
- 6. Transversality: generic, sector-specific
- 7. Dimension: single, multiple
- 8. Units: quantitative, qualitative
- 9. Format: web-based tool, Excel, formulas. (Saidani, et al., 2019)

Nevertheless, from a practical perspective, the authors also argue that even though an appropriate CE taxonomy could foster CE development as it provides a new basis for measurement, the implementation of CE models "relies on the synergy between key building blocks including product design, new business models, reverse logistics, enablers and systems conditions" (Saidani, et al., 2019, p. 556). Furthermore, CE strategies would affect the organizational models, technologies, shared knowledge, and product innovation directions, which are all related to change management (Figure 8).

Figure 8. Structure and tools of CE development

Source: authors, based on Saidani et al., 2019, extended

The work of Choudhary and Srivastava (2019) approaches energy innovation from the aspect of sustainability, in which the chronology of sustainability was also highlighted with key events and dates, e.g., Brundtland Commission report (1987), Earth Summit in Brazil (1992), UN Framework Convention on Climate Change, Kyoto protocol (2000-). According to the authors, the first decade of renewable energy development was between 2004 and 2014. The review of the authors identifies prior review themes in the area of PV research, for example:

- a) emission liability, carbon capture
- b) renewable energy and investments, instant change of technology (e.g., energy return on investment or scalability)
- c) integrated approach (e.g., hybrid solutions with biomass-PV), harvesting techniques
- d) power electronics, power optimization
- e) software, artificial intelligence
- f) grid integration, role of microgrid
- g) low-carbon economy, energy policy, innovative public thoughts
- h) weather and optimization, nature-inspired aspects, space solar, climate factor
- manufacturing optimization, forecasting for stability, material aspects, and energy baseline.
 (Choudhary & Srivastava, 2019)

The authors argue that there are several innovation areas that need to be explored to enable further growth based on PV-based clean energy, such as the efficient manufacturing of solar cells, innovative power electronics, energy-water-environment nexus of mitigation policies, renewable hybrid models for cost-effectiveness, energy storage, regenerative systems. Moreover, it is highlighted that "renewable energy system must incorporate business for the social environment and deliver inclusive functionality rather than only ownership" (Choudhary & Srivastava, 2019, p. 607) which would inherently require a change in current thought patterns of business.

One of the key studies of Eastern eco-innovation (EI) research was written He et al. (2018) who focused on the corporate background of EI. Their review showed that the main research themes were the following between 2006 and 2015: stakeholder influence; product-service systems; eco-design; drivers; environmental management systems; green supply chain management; EI systems or networks; new product development; performance & SMEs" (He, et al., 2018, p. 512). Based on their findings and further theoretical iteration, the authors developed a driver-source-position-performance framework which could be used to accelerate eco-innovation.

Table 9 shows how the EI process could be interpreted from the aspect of a single organization and how dynamic capabilities aspects could be interpreted in the outlined EI dimensions. Nevertheless, the authors highlight that collaborative knowledge management, global networking, and knowledge institutions are key for EI. Partnerships seem to be crucial for radical innovation, which usually leads to better performance compared to incremental innovation – nevertheless, financial and environmental outcomes are not always unequivocal, as they depend on the specific adoption of EI activities at certain companies (He, et al., 2018).

Framework	Туроlоду	Examples / Realization	Dynamic capabilities aspects	
Driver	External	Government, customers,	Sensing changing needs, new	
		stakeholders	trends, new threats and	
	Internal	Efficiency, environmental	opportunities	
		management concerns		
Source /	Reactive	Incremental innovation	Seizing opportunities,	
Strategy	Proactive	Radical innovation	managing threats by	
	Floative		innovation, building	
Position /	Eco-product	Eco-design, new product	partnerships for radical	
Implemen-		developments, product services	innovation	
tation	Eco-process	End-of-pipe and cleaner production	Initiating organizational	
		technologies	changes, transforming the	
	Eco-organization	Environmental management system	organization	
Performance /	Market-based	Financial indicators	Continuous control and	
Evaluation			reconfiguring if needed	
	Accounting-based	Overall profitability		
	Operation-based	Operation efficiency		

Table 9. El process, specificities and related governance tasks

Source: authors, based on He et al., 2018, extended

The history of EI technologies in corporate contexts was explored by Kuo and Smith (2018) who presented a four-stage evolution diagram about moving towards sustainability. According to their discussion, between 1990 and 2000, the focus was on green or sustainable product development because of the extended producer responsibility concept. Nevertheless, as enterprises faced challenges of autonomous product development, supply chain members started to collaborate in stage 2 (2000-2010) which resulted in (1) closed-loop supply chains, and later (2) innovative business models

to optimize the supply chain and manage risks. The problem with this approach was that collaboration partners forget to involve customers, i.e., customers did not like the end-products, thus, design for sustainable consumption is becoming more and more important since 2010 in stage 3. Additionally, to ensure a closed loop, recycling and waste management became more emphasized. At stage 4 (nowadays), enterprises should focus on the construction and the optimization of hybrid models to turn new technologies into eco-innovations. However, all the dimensions of development remain relevant in stage four. During this process "the organizational theories can help explain organizational behavior, designs, or structures (R52)[...] and the design and management of a sustainable business model should be eco-innovative (R51)" (Kuo & Smith, 2018, p. 212). Table 10 presents the list of the identified areas of supporting EI technologies and the relevance of strategic change.

id model	
ling	
1	
rating design,	
uation,	
ation	
methodologies,	
elling	
niques	
gn and	
agement of	
inable	
ness models	

Table 10. EI technology development dimensions

Source: authors, based on Kuo and Smith, 2018, extended

Table 11 presents the historical and economic insights of the above-presented research in the ecological and energy innovation and design area, and highlights related strategic and change aspects.

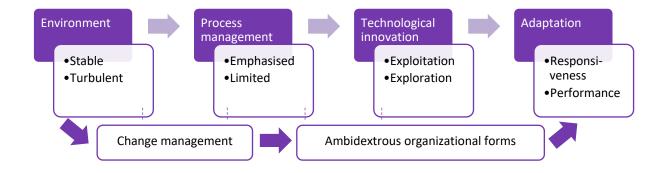
Western Ecological and Energy Innovation Research

Perspectives of analysis (examples for insights)

Authors and	Scope of the	Main finding(s) /	History	Economy	Design	Strategy and change
aff. country	research	suggestion(s)				
(Klewitz &	Sustainability-	Interaction with external	The term sustainable	While the concept of cleaner	Eco-design as a tool for	Business model
Hansen, 2014)	oriented	actors to increase SOI	development is used since	production focuses on	sustainability-oriented	transformation for
Germany	innovation (SOI)	performance and root the	1972, SOI has got increasing	environmental impact, eco-	product innovation (p.	SOI (p. 70)
	of SMEs	whole business model in	attention since 1987 (p. 57)	efficiency emphasizes	67)	
		sustainability		economic gain (p. 66)		
(Mirabella, et	Reusing food	Industrial symbiosis	Food waste is an important	Industrial ecology, circular	Designing novel	Involvement of
al., 2014)	waste in industrial	would be possible, but	topic since the 1990s (p. 28)	economy, and zero waste	beverages from by-	stakeholders, inter-
Italy	symbiosis	stakeholder involvement		economy are the leading	products (p. 34)	organizational
		is required		principles for eco-innovation		collaboration (p. 39)
				(p. 28)		
(Saidani, et al.,	Circular economy	A new taxonomy with 10	Since 1987, sustainable	Circular economy objectives	Sustainable development	CE strategies require
2019)	(CE) indicators	categories is developed	development becomes a more	(reduce, reuse, recycle) are	indicators, eco-design	new organizational
France, USA			and more important scientific	different from the traditional	tools, and circular	and business model
			and industrial topic, for the	linear economy, i.e., new	economy indicators have	(p. 556)
			goals of which CE could	measurement methods are	several taxonomies in the	
			function as "toolbox" (p. 543);	needed (p. 543)	literature (p. 547)	
			eco-design tools emerged in			
			the 1990s (p. 547)			

Cont.

Eastern <u>Ecologi</u>	cal and Energy In	novation Research	Perspectives of analysis (examples	for insights)		
Authors	Scope of the research	Main finding(s) / suggestion(s)	History	Economy	Design	Strategy and change
(Choudhary &	Photovoltaic	Need for innovative	The history of sustainability since	Renewable energy is a better	The intermittent nature	Reconfiguring business
Srivastava,	trends and	policies, energy cost	1987 has led to the first decade of	option for a sustainable	of PV capacities is	activities for the social
2019)	growth	reduction, social	development in renewable energy	future and global economic	challenging for energy	environment (p. 608)
India		acceptance, capacity	between 2004-2014 (p. 591)	contribution compared to	management design (p.	
		building and collaborations		other technologies (p. 591)	606), the design of digital	
					controllers/ converters	
					(p. 602)	
(He, et al.,	Corporate	Using the driver-source-	Brundtland report in 1987	Climate changes,	Eco-design is one of the	Seizing opportunities
2018)	eco-	position-performance	emphasized environmentally	environmental pollution and	nine main areas of eco-	by eco-product
China, Hong	innovation (EI)	framework could lead to	sound technologies, and since	resource scarcity mean a	innovation (research) (p.	development
Kong		competitive advantage by	2000, El diffused as a corporate	growing pressure for	511)	transforming with
		EI	practice and in supply chain	companies to follow both		eco-processes
			networks (p. 503)	economic and environmental		and eco-organization
				goals (p. 503)		systems (p. 512)
(Kuo & Smith,	Eco-	New technologies are	Stage 1 of enterprise evolution	Circular economy	Design for the bottom of	Changing culture,
2018)	innovation	needed for business model	towards sustainability was	development is a key future	the pyramid (BOP) to	behaviour, interests
Taiwan	technologies	integration, green	between 1990 and 2000 with	direction of EI technology	reduce poverty (p. 216),	and designing
		marketing and	green product development (p.	development (p. 216)	and value-added design	sustainable business
		consumption, and hybrid	209)		for economical ecological	models (p. 211)
		models			and social enhancements	
					(p. 217)	


Table 11. Historical and economic aspects of ecological and energy innovation and design research

Source: authors

3.3.2. Technological innovation (non-eco and non-energy)

One of the most influential studies concerning technological innovation was written by Brenner and Tushman (2003), in which they argue that even though there are increasing institutional pressures to improve process management, which is expected to positively affect operational efficiency, it is known for several decades that productivity efforts are not enough to maintain the firm's ability to remain competitive in the long run. Accordingly, this needs dynamic capabilities through which exploiting existing markets and exploring new ones would be possible. Regarding technological innovation, the authors present that exploitation can be associated with incremental technological innovation for current customer sets, while exploration would be realized through architectural or radical innovation which is aimed at emergent customer sets. The choice between the nature of technological innovation (and product innovation) must be based on the environment, i.e., technological cycles with incremental and non-incremental changes. According to their model (Figure 9), process management, exploitative and explorative technological innovation, and the stable or turbulent environment affect the adaptation of organizations, in terms of performance (e.g., financial) and responsiveness (to technological transitions) (Benner & Tushman, 2003). From a change management perspective, it means that managers must find (ambidextrous) organizational forms based on the nature of the environment and the appropriate innovation goals, moreover, to limit the emphasis on process management if needed.

Figure 9. Technological innovation from the aspect of strategic ambidexterity

Source: authors, based on Benner & Tushman, 2003, extended

Besides strategic ambidexterity, another important direction of technological innovation research is open innovation. In the review of West and Bogers (2014), the introduction highlights that open innovation is a new paradigm which is in contrast to the dominant innovation approach of the 20th

century which was about producing technological innovations through corporate R&D and using the outputs by the vertically integrated commercialization infrastructure. Instead, external and internal ideas and capabilities can be combined to increase technological innovation performance. An important aspect of open innovation is how firms leverage external sources of innovation, regarding which the authors argue that it usually follows a three-phase linear process: obtaining, integrating, and commercializing; and this can be combined with the interaction among collaborators. Table 12 presents the phases and research topics of leveraging external sources of innovation, combined with the relevant strategic change management and governance tasks.

Phases	Steps	Topics	Governance
Obtaining	Searching	Sourcing, Technology scouts, Limits	Inter-organizational network
	Enabling	/ Brokerage, Contests, Intermediaries,	building
	Filtering	Toolkits, Platforms, Gatekeepers	
	Acquiring	Incentives to share, Contracting,	-
		Nature of the innovation,	
Integrating		Absorptive capacity, Culture and "Not	Initiating organizational
		invented here", Incentives to	changes focusing on open
		cooperate, Competencies	culture, long-term-focused
			incentives and competency
			development
Commercializing		Commercialization process, Value	Reconfiguring business
		creation, Value capture	models
Interaction	Feedback	R&D Feedback, Customer/market	Partner and other stakeholder
		feedback	management
	Reciprocal	Cocreation, Communities, Value	-
		networks	

Table 12. Phases, steps, topics and governance tasks of leveraging external resources for open innovation

Source: authors, based on West and Bogers, 2014, extended

Technological innovation is crucial in certain sectors, for example, in the manufacturing sector, as Becheikh et al. (2006) discussed in their review about determinants of innovation. Based on empirical studies published between 1993 and 2003, the authors found that many internal factors determine innovation in manufacturing firms, such as Future Potentials Observatory

- 1. the firms' general characteristics (e.g., size and age)
- 2. strategies (e.g., diversification, internalization, differentiation)
- 3. structure (e.g., formal structure or flexibility, centralization, interactions)
- 4. control (e.g., financial or strategic)
- 5. culture (e.g., resistance to change)
- 6. leadership (e.g., CEO characteristics, management experience)
- 7. functional operation (e.g., R&D assets, HR qualification, financial autonomy).

Nevertheless, there are contextual factors which influence technological innovation performance, such as the industry, the region, the inter-organizational networks, knowledge or technology acquisition opportunities, government policies, or surrounding culture (Becheikh, et al., 2006). The authors concluded that managers and policymakers have opportunities to foster innovation in the manufacturing sector (i.e., initiate change, as detailed in Table 13).

Subject	of	Managers (firm level)	Policymakers (country level)		
changes					
Goals		Clear definition of the strategies	Developing and communicating clear		
		Specialization built on distinctive	policies		
		competencies, differentiation	Promote certain sectors which are relevant		
		Internalization and patenting	for innovation		
		Monitoring competitors	Strategically planning university locations		
		Increasing or decreasing firm size and research centres			
Realization		Flexible structure	Encourage competition by reducing entry		
		Interaction between units	barriers		
		Qualified employees, training and	Providing financial support by subsidies,		
		development	preferential rates, loans, tax credits		
		Empowerment of employees	Establishing institutions to support the		
		Innovation culture with total quality	internalization of firms		
		management and continuous	Creating meeting places where entities can		
		improvement principles	collaborate and ideate		
			Promoting clusters		

 Table 13. Change directions to foster technological innovation
 Innovation

Source: authors, based on Becheikh, et al., 2006

Compared to Western research, highly cited Eastern review papers which are related to technological innovation were focusing less on abstract technological innovation and more on concrete technologies

and sectors. For example, Tao et al. (2021) focused on using machine learning (ML) in perovskite materials discovery and design, which "have attracted much attention in many scientific fields for the composition diversity, easily available synthetic conditions and a variety of attractive properties" (p. 1). According to their study, the traditional material development was mainly based on trial and error, and continuous improvement, which needed a long-time. After that, simulation methods, such as Density Functional Theory (DFT), Monte Carlo simulation and molecular dynamics were explored and used, however, computational simulation methods were also challenging because of the need for professional skills and high computational costs. Recently, machine learning has emerged, which drives artificial intelligence in analyzing data and structures, and could provide a new workflow for materials discovery and research Based on the review of the authors, the application of ML will increase materials research, however, important tasks must be realized to proceed to a more mature phase, such as:

- a) the combination of ML and experiments or simulations
- b) new ML algorithms for smaller samples
- c) ML computing platform development
- d) enabling the interpretation of the statistical ML black box. (Tao, et al., 2021)

Regarding task a), Figure 10 shows that this combination would enable significant advancements in research and development.

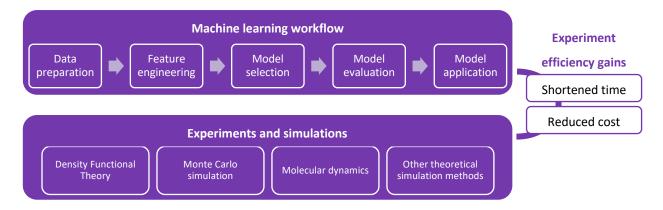


Figure 10. Perspectives of Machine Learning in materials research

Source: authors, based Tao et al., 2021

Besides machine learning, artificial intelligence (AI) is also a key topic in the area of technological innovation, which was analyzed concerning the education sector by Chen et al (2020). The authors mention that the development of personal computers since the 1970s and the programmed

instructions since the 1990s enabled to use computers in different departments of the education sector After that, the higher computational and data processing performance, and the emergence of the worldwide web and task-oriented programs further increased the presence of computers and affected the interactions among students and teachers. As information communication technologies are being developed further, the authors argue that AI can help to reach higher quality in

- teaching, e.g., through increased efficiency in reviewing students' assignment
- learning, e.g., through a customized curriculum which reflects the students' different needs.
 (Chen, et al., 2020)

Furthermore, the authors discuss what future scenarios of AI implementation could be relevant in the education sector. Table 14 presents these scenarios with additional operational changes which could be relevant during AI-based transformation.

Scenarios	Al-related technological innovations	Operational changes (examples)
		by new technologies
Assessment of students	Adaptive learning method and personalized	Performing administrative tasks
and schools	learning approach, academic analytics	instead of instructors
Grading and evaluation	Image recognition, computer-vision,	Grading exams, provide feedback,
of papers and exams	prediction system	assist the decision-making of
		instructors
Personalized intelligent	Data mining or Bayesian knowledge	Uncovering learning
teaching	interference, intelligent teaching systems,	shortcomings, identifying learning
	learning analytics	styles and preferences of students
Smart school	Face recognition, speech recognition, virtual	Allowing instruction beyond the
	labs, Augmenter Reality, Virtual Reality,	classroom, supporting
	hearing and sensing technologies	collaboration
Online and mobile	Edge computing, virtual personalized	Helping to build personalized
remote education	assistants, real-time analysis	learning plans, detecting learning
		states and apply intelligent
		adaptive intervention

Table 14. AI scenarios in education and potential operational changes by technological innovation

Source: authors, based on Chen, et al., 2020, extended

The most relevant review (based on citation number) which discusses technological innovation with a more abstract approach was written by Yang et al. (2012) who analyzed the past, present and future

of technological innovation in China. Regarding the past, the authors argue that even though technological innovation was important in the growth of the Chinese economy in the last decades, "the financial crises in the late 1990s and in 2008 have made it clear to the Chinese government that the nation's sustainable growth in the global economy will depend on the further development of the science and technology system and on the competence of its technological innovation" (Yang, et al., 2012, p. 820). Along with this recognition, the previously central-plan-based economy became a market-based economy, which was facilitated and controlled by the government. Nevertheless, based on the literature review, the authors identified another important external factor which influenced the technological innovation of Chinese firms, i.e., the uncertain environment in the transition economy. In case of the internal factors, scholars highlighted more topics, such as market orientation, entrepreneurship, top management teams, organizational control, and organizational learning. While general strategic management would only consider these two factors (internal and external) the authors also argue the importance of interfirm cooperation, i.e., alliances, networks and managerial ties, and cluster cooperation (Yang, et al., 2012). Based on the framework of the authors for future research, Figure 11 presents how certain factors influence innovation performance, and what dynamic governance tasks must be realized to accelerate innovation performance.

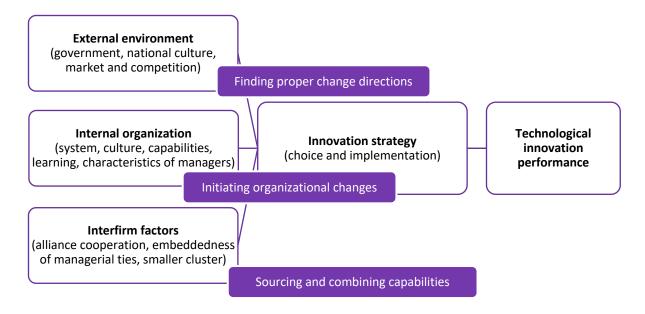


Figure 11. Factors behind technological innovation performance and related governance tasks

Source: authors, based on Yang et al., 2012, extended

Table 15 presents the historical and economic insights of the above-presented research in the technological innovation and design area, and highlights related strategic and change aspects.

Western Technological Innovation Research		Perspectives of analysis (examples for insights)				
Authors and aff. country	Scope of the research	Main finding(s) / suggestion(s)	History	Economy	Design	Strategy and change
(Benner &	Ambidexterity	Process management	Since 1978, it is discussed that	Technological cycles affect	Products can be	In a stable
Tushman,	and process	can be	productivity gains and efficiency focus	organization environments with	designed for	environment,
2003)	management	counterproductive in	might hamper long-term	the emergence of a dominant	existing needs	process managemen
USA		technologically complex	competitiveness, however, institutional	technological framework – and	(exploitation) or	could contribute to
		contexts where	pressures orient managerial attention to	after product innovation, process	emergent markets	effectiveness, thus
		incremental innovation	process management in the 2000s (p.	innovation and incremental	(exploration) (p.	building resistance to
		is not enough	238)	refinements come, ended by a	243)	change in a turbulent
				new discontinuity (p. 248)		context (p. 252)
(West &	Open	Business models are	The dominant innovation approach of	External sourcing could be	External and	Cultural changes
Bogers, 2014)	innovation and	often ignored in	the 20 th century was to produce	relevant because of (1) the	internal ideas are	might be needed to
USA,	leveraging	research despite their	technological innovations through	economies of scale or (2) access to	combined in the	utilize external
Denmark	external sources	role in open innovation	corporate R&D and vertically integrated	innovations or innovation-	open innovation	innovation and/or
			commercialization infrastructure (p.	producing capabilities (p. 815)	paradigm (p. 815)	collaborate (p. 821)
			814)			
(Becheikh, et	Innovation in	Managers and	According to Schumpeter (1934),	Policymakers can foster	Improvement only	Innovation might
al., 2006)	the	policymakers have	innovation drives economic	innovation by reducing entry	in product design	need a change in
Canada	manufacturing	many options or duties	development, and since then,	barriers from economic sectors,	and package are	corporate strategy,
	sector	to support	innovation affects the (international)	supporting geographical clusters,	not innovations	structure, culture,
		technological	competitiveness of companies and	helping internalization, etc. (p.	(p. 645)	marketing or firm
		innovation	countries (p. 644)	658)		size (p. 659)

Cont.

Eastern Technological Innovation Research

Perspectives of analysis (examples for insights)

A	C (1)					<u></u>
Authors and	Scope of the	Main finding(s) /	History	Economy	Design	Strategy and change
aff. country	research	suggestion(s)				
(Tao, et al.,	Machine learning	The application of ML	Traditional material development	The development of materials	ML is a useful tool to	ML in materials
2021)	(ML) in	will increase materials	was mainly based on trial and	drives technological	support materials	research is early-phase
China	(perovskite)	research which	error, which was followed by	innovation and scientific	design and screen	but must be promoted
	materials	supports	simulated methods, and since the	progress (p. 1)	different materials (p.	to increase experiment
	discovery and	technological	1980s ML emerged which can		1)	efficiency (p. 14)
	design	innovation	accelerate the process (p. 1)			
(Chen, et al.,	Artificial	AI can help to reach	Personal computers (1970s-),	Computer-related	AI development brings	Change in the
2020)	intelligence (AI)	higher quality in	programmed instructions (1990s-),	technological innovations	together system	education system by AI
China	in Education	teaching and learning	later computer-aided instruction	encouraged AI development	designers, data	is feasible based on
			and learning (CAI/L) and recently	which affects many industries	scientists, product	different scenarios,
			the internet, increased processing,	(p. 75276)	designers, statisticians,	such as, "personalized
			and software packages are useful		linguists, and other	teaching" or "smart
			for education (p. 75265)		experts (p. 75267)	school" (p. 75268)
(Yang, et al.,	Technological	Future research	Technological innovation was a key	The central-plan-based	Market orientation can	External, internal, and
2012)	innovation in	should focus on the	driver of the rapid development of	economy became a market-	enhance	interfirm factors affect
China	China	choice and	China's economy in the past	based economy, pushed and	competitiveness and	the innovation
		implementation of an	decades (p. 820)	controlled by the government	new product	performance (p. 832)
		innovation strategy		(p. 822)	performance (p. 824)	

Table 15. Historical and economic aspects of technological (non-eco-, non-energy) innovation and design research

Source: authors

3.3.3. Social and business model innovation

From a policy perspective, Voß et al. (2009) was focusing on the relationship between long-term policy design and transition management. The authors argue that long-range policy design has become less influential after the 1970s, but recent long-term policy design concepts seem to be more reflexive with the recognition of limits. The concept of transition management, however, combines the vision of sustainable development with short-term experimental learning with a time horizon of 25-50 years. It aims to realize substantive goals (e.g., increasing resource efficiency) with the core "idea to modulate co-evolutionary dynamics that already drive socio-technical change, and to bend them in ways that facilitate transformative innovation" (Voß, et al., 2009, p. 277), and nurturing and growing approach (instead of planning and controlling change). Accordingly, transition management supports policies for social learning, and finding ways of social innovation. Nevertheless, to follow this approach in practice, transition management would need redesigning, according to the authors (Table 16). (Voß, et al., 2009)

development	
Transition in socio-technical systems	Broad societal discourse, challenging the legitimacy of existing
	systems
Innovators and stakeholders	New principles and guidelines for participant selection and
	interactions among actors who co-produce new solutions
Change visions	Construction by participants according to feasibility, creative and
	normative aspects
Experimentation	Procedures to select and design experimentation
Evaluation and learning	According to broad techno-economic and societal aspects, and
	alternative pathways, learning from experiments and the overall
	process
Legitimacy	Inclusivity, participation, transparency
Approach	Policy design as an innovation process, continuous design

Table 16. Transition management as a tool for sustainable development and long-term policy design

Policy design aspect of sustainable Transition management approach

Source: authors, based on Voß, et al., 2009

Social innovation is sometimes mentioned together with sustainable innovation and responsible innovation (RI), for example in the work of Lubbering et al. (2017) which was focused on the implementation of RI in a business context. The authors highlight that social innovation "is a commonly but not consistently used term by scientists as it is conceptualized and defined in different ways by different streams of scholars" (Lubberink, et al., 2017, p. 5). Different interpretations include intended and unintended social change, intangible innovations, creation of social value, driving positive social change, or meeting social needs and improving human and environmental well-being (Lubberink, et al., 2017). In contrast, RI is more about innovating with and for society, within four dimensions (Table 17), which can require changes within the organizations as well.

	Main idea	Examples of RI-supportive	Driving internal	
		practices in a business context	change	
Anticipation	Systematic thinking	Understanding the innovation	Roadmap developmen	
	about the desirable	context (e.g., trends,	to increase the positive	
	futures and the potential	technologies, legislation) and the	impact	
	benefits and also	social problem, risk assessment	Aligning business	
	problems and	of the innovation,	strategy with impact	
	alternatives of the		vision	
	innovation			
Reflexivity	Exploring underlying	Formal evaluations of the actions	Cultural change for	
	values and beliefs to	and responsibilities	employee	
	ensure wider moral	Knowledge assessment	empowerment and	
	responsibility	Prioritizing certain values and	self-reflection	
		motivations		
Inclusion and	Frequent or continuous	Involvement of wider public,	Resource allocation to	
deliberation	engagement of	supply-chain actors, end-users,	enable networking,	
	stakeholders,	experts, governmental agencies	involvement and	
	negotiations, discussing	Formal process for collecting	reorganization of work	
	concerns and bias	information, organizing dialogues	with stakeholders	
		and evaluation		
Responsiveness	Shaping innovation	Addressing grand environmental,	Preventing or	
	direction based on	social, and economic challenges	overcoming	
	stakeholder values	Addressing local problems	organizational inertia	

Table 17. Responsible innovation principles, practices and change drivers within organizations

Source: authors, based on Lubberink, et al., 2017

Sustainability is also a key topic in case of business model innovation, not only social innovation. For example, Bocken, et al. (2014) focused on the relationship between sustainability and business model innovation by identifying nine different sustainable business model archetypes which firms can follow to support sustainable development and shape their transformation. The authors argue that business model innovation in line with these archetypes can be a tool to change the common phenomenon that businesses disregard the value of natural assets and ecological systems despite their well-known importance for human well-being. It is because, "in a sustainable business, the value proposition would provide measurable ecological and/or social value in concert with economic value" (Bocken, et al., 2014, p. 43). Nevertheless, business modeling must go beyond the value proposition. Accordingly, the authors described the nine archetypes according to three dimensions, i.e., value proposition, value creation and delivery (key activities, resources, channels, partners, technology), value capture (cost structure and revenue streams) in three groupings (technological, social, and organizational) (Figure 12). (Bocken, et al., 2014)

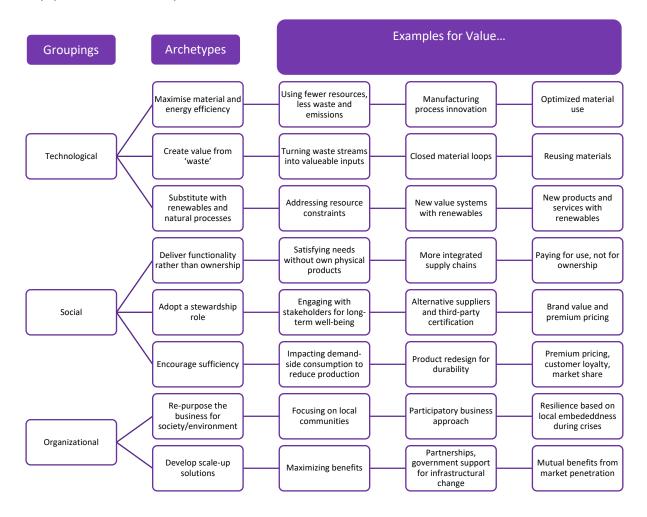


Figure 12. Sustainable business model archetypes and examples

Source: authors, based on Bocken, et al., 2014

Regarding the Eastern social and business model innovation (BMI) research, Bashir & Verma (2019) was focusing on the internal factors and consequences. According to the authors, researching business models became important in the early 1990s with the dot com bubble, and prior research tends to emphasize that technological developments could drive BMI. The authors highlight that in low labour economies, such as in China or India, companies can imitate product or service innovations more easily, which increases the importance of BMI which is a more complex subject and that is why it can lead to a more sustained competitive advantage. Based on their findings, structure, culture, inertia, leadership, and technology are found to be the antecedents of BMI, BMI is moderated by firm size and inexperience, and BMI can affect strategic flexibility, competitiveness, and competitive advantage. Figure 13 shows that organizational inertia is a key reason why incumbents are worse at BMI compared to new entrants, however, if they are successful, better economies of scale, advanced control of key resources and better bargaining power enable to improve competitiveness through BMI in a larger pace (i.e., firm size positively moderates the relationship between BMI and firm competitiveness) (Bashir & Verma, 2019, p. 274).

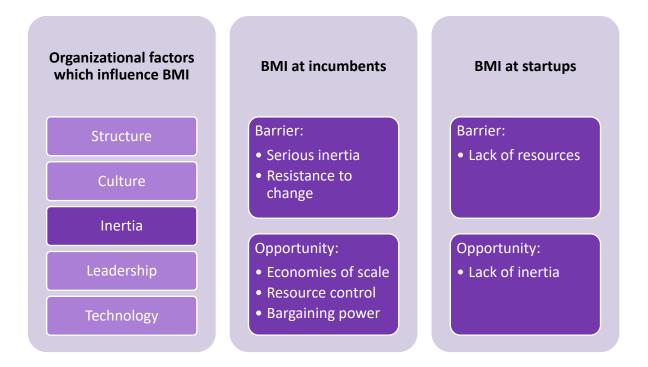


Figure 13. General and firm-size specific factors of business model innovation

Source: authors, based on Bashir & Verma, 2019

BMI was also interconnected with knowledge management (KM) which has been acknowledged to be important for BMI in the early 2000s when it became "the mantra for survival, competence, and success of pure-play net enterprises, as well as relatively traditional brick-and-mortar enterprises faced

with the challenge of transforming their business models into, and beyond, brick-and-mortar companies" (Bashir & Farooq, 2018, p. 363). Accordingly, Bashir & Farooq (2018) developed a conceptual model which links KM, BM and firm competence based on their underlying factors:

- 1. KM with knowledge acquisition, conversion, dissemination, application, and reuse;
- 2. BMI with, value proposition, assets and capabilities, revenues and cost architecture, and actors in business networks.

Based on their review, the main idea of the conceptual model is that companies must integrate KM and BMI to gain a sustainable competitive advantage. Their argument is supported by prior influential theories, such as the resource-based view (RBV), which suggest that knowledge is a key resource to be developed and used for BMI, and the knowledge-based view (KBV), according to which competitive advantage derives from KM activities. The logic of these influences within the organization and the consequent role of Chief Knowledge Officers are illustrated in Figure 14. (Bashir & Farooq, 2018)

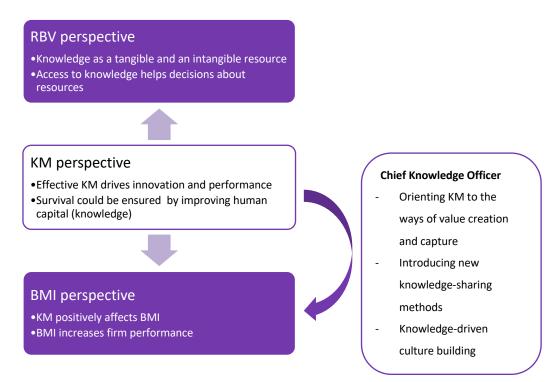


Figure 14. Knowledge management for business model innovation

Source: authors, based on Bashir & Farooq, 2018

In case of social innovation, Kim and Lim emphasize the role of social enterprises, framed by the social economy theory (Kim & Lim, 2017). Accordingly, the social enterprise is a type of organization which realizes social activities as a member of an independent third sector between the market and the state.

Regarding this nature, social enterprises are like non-profit organizations, voluntary groups or nongovernmental organizations, however, they are different due to the emphasis on social innovation processes, social entrepreneurship, and the dual goal of gaining social and economic benefits (Kim & Lim, 2017). The authors argue that previously, local and regional development (LRD) was primarily market-centred with various efforts on export-oriented industrialization, public investment, realizing comparative advantages or land reform, but more recently, broader considerations emerged, such as environmental protection. Sustainable LRD, however, has serious obstacles:

- 1. lack of participation (e.g., by civil communities)
- 2. lack of will (e.g., in economic organizations)
- 3. conflictual definitions of sustainable development (e.g., between government organizations and economic organizations)
- 4. lack of resources and capacities (e.g., of state administrations or companies)
- 5. lack of cooperation (e.g., between civil society and business). (Kim & Lim, 2017)

Nevertheless, social enterprises could play a beneficial role in solving these problems, mainly based on cooperation and stakeholder engagement, as detailed in Figure 15.

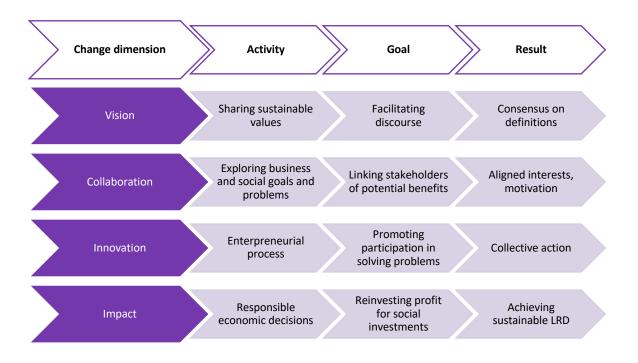


Figure 15. The role of social enterprises in sustainable, local and regional development

Source: authors, based on Kim & Lim, 2017

Table 18 presents the historical and economic insights of the above-presented research in the social and business model innovation and design area, and highlights related strategic and change aspects.

Western <u>Social /</u>	Business Model Ir	novation Research	Perspectives of innovation analysi	s (examples for insights)		
Authors and	Scope of the	Main finding(s) /	History	Economy	Design	Strategy and change
aff. country	research	suggestion(s)				
(Voß, et al.,	Long-term	Policy design and transition	After the 1970s, long-term	In transition management,	"Design as a process",	Redesigning transition
2009)	policy design	management can be a	policies became less dominant,	policy design must not be	i.e., policy design is an	management is needed
Germany, UK,	and transition	governance or social	but the transition towards	evaluated only according to	open-ended process of	according to
Netherlands	management	innovation	sustainable development might	narrow techno-economic	social innovation (p.	sustainable
			induce the return to long-range	criteria but broad societal	278)	development goals (p.
			policy design (p. 276)	implications (p. 295)		295)
(Lubberink, et	Responsible	Anticipation, reflexivity,	Private industry is increasingly	RI must have not only social	Responsiveness for RI	Changes in the external
al., 2017)	innovation	inclusion, deliberation,	seen not only as part of societal	and environmental impact,	could include tailoring	environment induce
Netherlands	(RI) in the	responsiveness and	problems but the potential	but economic as well (p. 2)	products for local	responsive innovation
	business	knowledge management	developers of solutions (p. 1)		needs (p. 16)	strategies (p. 16)
	context	are key to RI				
(Bocken, et al.,	Sustainability	There are certain	While valuing ecological systems	Western economic models	Design for maximized	Firms can use a
2014)	and business	sustainable business model	and natural capital is well-known	must change fundamentally	product life a potential	sustainable business
UK	model	archetypes which help to	for decades, businesses often	with a radical reduction in	value proposition (p.	model archetype to
	innovation	develop a common	disregard the value of natural	consumption to enable a	46)	shape their
		language for sustainable	assets (p. 42)	sustainable future (p. 52)		transformation (p. 54)
		development				

Cont.

Eastern <u>Social /</u>	Business Model Innov	ation Research	Perspectives of innovation analysis (examples for insights)							
Authors and	Scope of the	Main finding(s) /	History	Economy	Design	Strategy and change				
aff. country	research	suggestion(s)	,			·····y, ·····y·				
(Bashir &	Internal factors	BMI could enhance firm	BM became an important	Low labour economies, such as	BMI is an alternative to	Organizational inertia				
Verma, 2019)	and	performance and	topic in the early 1990s	China or India make vulnerable	product (or service or	can prevent firms from				
India	consequences of	strategic flexibility	with the dot com bubble	product and service development to	process) innovation (p.	modifying their BM (p.				
	business model		(p. 262)	imitation (p. 273), but imitating a	274)	269)				
	innovation (BMI)			new BMI is more difficult						
(Bashir &	Knowledge	Knowledge sharing	KM is acknowledged to be	Knowledge creation and sharing is	BM is different from	BMs need to be				
Farooq, 2018)	management	between departments,	important for BMI since	the key to sustainable competitive	product innovation (p.	reshaped because of a				
India	(KM) and BMI	and Chief Knowledge	the success of e-	advantage in the knowledge	363); procedures,	dynamic environment,				
		Officers (CKO) could	commerce and the	economy (p. 366)	structures of KM and	and not the sensing but				
		drive BMI	transformation challenge		value capture of BM	the implementation is				
			of "traditional" brick-and-		can be redesigned (p.	the most challenging				
			mortar companies in the		365, 366, 370)	part (p. 375)				
			early 2000s (p. 363)							
(Kim & Lim,	Social enterprise	Social enterprises can	Historically, LRD was	Social economy can be seen as a	New products derive	The social innovation				
2017)	and development	play a role in social	focusing on market-driven	third and independent sector	from social	process can be				
Korea		innovation processes,	strategies, emphasizing	between the market and the state,	entrepreneurs to solve	facilitated by social				
		and local and regional	employment, income, or	where social enterprises pursue	social problems (p. 3)	enterprises through				
		development (LRD)	productivity (p. 1)	profit and socio-environmental		relational assets and				
				benefits simultaneously (p. 2-3)		collaboration (p. 9-10)				

Table 18. Historical and economic aspects of social and business model innovation and design research

Source: authors

3.3.4. Cultural innovation and design

Studies mentioning cultural and/or design innovation are less connected to the higher level economic and transdisciplinary change framework than the studies focusing on the previous innovation areas. Based on the WoS database, there are less than 30 articles on the topic that concern "cultural innovation" or "design innovation". A short overview of the most relevant studies is presented below.

The most cited work in the area of cultural and design innovation is written by Hills et al. (2015). The authors focus on the exploration-exploitation trade-off, but instead of interpreting this dynamic in a business context, they point out its significance in the cognitive search process. They highlight that this tradeoff can be interpreted at individual, group, and social levels, and affects science and cultural innovation as well. From an adaptation perspective, the authors made a similar abstract statement than business scholars often do: "maladaptive states of both individual and group search lie at the extremes of too much exploitation (compulsiveness, perseveration, and groupthink) or too much exploration (impulsiveness, inattentiveness, and failure to leverage social information)" (Hills, et al., 2015, p. 52).

Another approach to cultural innovation is possible by understanding cultural transmissions. Mesoudi and Whiten (2008) focus on three methods used in cultural transmission experiments. The first is the transmission chain method, in which information goes through (and maybe changes) a linear chain of participants. The second is the replacement method, in which participants are gradually moved in and out of groups. The third is the closed-group method, in which group learning is realized without replacement to explore whom people learn from individually or when cultural (collective) learning is present instead of individual learning. (Mesoudi & Whiten, 2008)

The most relevant study from this area is about designing innovation networks. Smart et al. (2007) that inter-organizational innovation networks are useful for technological innovation, as they enable the exploitation of complementary resources. The authors introduce a concept of technological rules about design-oriented knowledge which help effective network building:

- 1. Design for lifecycle: Concerning the entire product lifecycle during the strategy formulation of a new product development
- 2. Design for proactive management: Establishment of formal structures and coordinating processes
- 3. Design for emergence: Encouraging creativity and informal channels
- 4. Design for diversity: Ensuring heterogeneous experience, skills, and disciplines to cope with development complexity

Future Potentials Observatory

- 5. Design for high involvement: Relationship management and connecting people
- 6. Design for diffusion: Creating practice-based learning opportunities for knowledge transfer
- 7. Design for strategic innovation portfolio: Coordinating several networks with different purposes. (Smart, et al., 2007)

In case of Eastern research, while "cultural innovation" seems to be a disregarded term, "design innovation" appears in a few cases. Most of these studies, however, rather concern the technical and technological aspects of design innovation instead of product or business development perspectives. For example, Wang et al. (2018) mention design innovation in the context of battery thermal management and safety issues. A similarly narrow-focused mention belongs to the work of Amran et al. (2020), in which the authors review the design aspects of using structural insulated panels for building construction.

The most relevant study, which involves design innovation in its topic, is related to the multi-life cycle (MLC) assessment of sustainable products. Suhariyanto et al. (2017) argue that traditional Life Cycle Assessment (LCA) guidelines are inappropriate for products with multiple life cycles, enabled by new design approaches and/or technologies. Accordingly, MLC products can be developed by design innovation or technological innovation. Table 19 shows how design innovation and technological innovation can contribute to MLC product development.

Phase	First life cycle	New life cycle by design	New product generation by
		innovation	technological innovation
1	Raw material extraction	Recycling and material	New technology for recovered
		processing	materials
2	Manufacturing	Remanufacturing	Manufacturing
3	Distribution	Distribution	Distribution
4	Use	Use	Use
5	End-of-life / New life cycle	End-of-life / New life cycle	End-of-life / New life cycle

 Table 19. Design innovation and technological innovation of multi-life-cycle products

Source: authors, based on Suhariyanto et al., 2017

Table 20 presents the historical and economic insights of the above-presented research in the social and business model innovation and design area, and highlights related strategic and change aspects.

Western Cultural and Design Innovation Research			Perspectives of innovation analysis (examples for insights)						
Authors and aff. country	Scope of the research	Main finding(s) / suggestion(s)	History	Economy	Design	Strategy and change			
(Hills, et al.,	Exploration	Search problems	The trade-off between exploitation	Cognitive systems and the	Exploitation and exploration	Too much exploitation or			
2015)	and	and solutions affect	and exploration has been reflected	exploitation-exploration	patterns can be	exploration can lead to			
UK, USA,	exploitation	problem-solving,	in numerous research fields, e.g.,	trade-off can be relevant in	differentiated in case of	inadequate responses in			
Germany	in cognitive	memory, scientific	using existing knowledge versus	case of social innovation (p.	visual search as well (p. 47)	a given environment (p.			
	search	and cultural	seeking new knowledge in social	46)	which can affect product	52)			
	processes	innovation	learning (p. 47)		design (p. 46)				
(Mesoudi &	Cultural	The replacement	Accumulating cultural innovations	In an economic game,	Design activities might be	Cultural transmission			
Whiten, 2008)	transmission	method is	in successive generations means	generating stable	affected by social learning	could be more important			
υк	methods	applicable to	learning and adding new cultural	behavioural conventions	mechanisms (learning,	compared to individual			
		studying cultural	knowledge by each generation (p.	are rather possible through	teaching, language) (p. 3489)	learning and genetic			
		innovation	3494)	verbal or written		evolution when changes			
				instructions compared to		in the environment are			
				observation (p. 3497)		too rapid (p. 3490)			
(Smart, et al.,	Designing	Certain	Traditionally, the resource-based	Hypercompetitive and	The discipline of	Networks are			
2007)	innovation	technological rules	view of the firm assumed that the	global business	management is a "design	continuously evolving,			
ик	networks	based on design-	source innovation should be	environments force(d)	science", thus design-	and could pursue both			
		based knowledge	searched within the boundary of a	companies to develop	oriented knowledge is	incremental and			
		allow forming	single firm (p. 1071)	critical capabilities for	needed, which is grounded,	discontinuous change (p.			
		efficient networks		product/service renewal (p.	field-tested, and actionable	1077)			
				1070)	(p. 1072)				

Cont.

Eastern Cultural and Design Innovation Research

Perspectives of innovation analysis (examples for insights)

Authors and	Scope of the	Main finding(s) /	History	Economy	Design	Strategy and change
aff. country	research	suggestion(s)				
(Wang, et al.,	Battery thermal	BTM system research	Green energy vehicles	BTM safety is critical to avoid	Thermo-safe design	Technological innovation is
2018)	management	should focus on	with batteries become	socioeconomic loss (e.g., because	innovation of batteries is	challenged by the goal of
China	(BTM) and safety	enhanced safety and	more and more	of damages from fire or	needed concerning cells,	preventing and mitigating
		optimal working	important as countries	explosion) (p. 4022)	modules, packs, and	environmental harms (in
		temperature range	announce deadlines for		related systems and	the automobile industry)
			fossil-fuelled vehicles (p.		controls (p. 4008, 4009)	(p. 4008)
			4009)			
(Amran, et al.,	Structural	Fabrication of SIPs	SIPs were developed	Insulation systems of buildings	Design efficiency and	From a local idea (SIP in
2020)	insulated panels	has been developed	during the 1930s to	must be in line with not only	thermal performance can	the UK), the solution was
Saudi Arabia,	for construction	recently and	design and fabricate	technical aspects (e.g., thermal	be increased in case of	increasingly manufactured
Malaysia, India,	(SIP)	performed well over	sandwich panels (p. 1358)	insulation) but environmental	current SIP applications	by designers and builders,
Russia		the years		and economic aspects (p. 1365)	(p. 1359)	with novel elements over
						time (p. 1375)
(Suhariyanto,	Multi-Life Cycle	MLCA perspectives	The rate and direction of	Design for Sustainability can	Design innovation is one	The MLC product system
et al., 2017)	Assessment	should be explored in	technological changes are	contribute to environmental,	tool to generate multiple	would mean cradle-to-
Malaysia	(MLCA) for	case of products with	traditionally seen as an	social and also economic	life cycle products, by	cradle design, encourage
	sustainable	multiple possible life	influential factor in	advantages as companies could	reusing, remanufacturing,	multi-generation products,
	products	cycles	environmental impacts	increase profits through material	and recycling without	and change the broader
			(p. 679)	reductions and attracting a new	disassembly, redesigning,	environmental
				customer base (p. 678)	or upgrading (p. 678)	performance (p. 694)

Table 20. Historical and economic aspects of cultural innovation and design research

Source: authors

4. Conclusions

4.1. MQ I: The relevance of the focal innovation and design areas

The first main research question was the following:

Are the pre-defined innovation areas indeed relevant based on the literature?

Based on quantitative and qualitative SLR data, the pre-defined innovation areas are relevant, but to varying extents. The focal innovation areas can belong to heterogenous research fields (there were 44 related fields even in case of the top 100 reviews), but the main fields are Business and Management, Economics, Engineering, Environmental and Sustainable Science. Based on the top 100 highly-cited reviews of the focal areas, eco-innovation and technological innovation is the main areas where Western and Eastern institutes work together, while social and business model innovation did not induce such influential collaborative works until now.

4.2. MQ II: Similarities and differences in East/West context

The second main research question was the following:

What similarities and differences could be identified in the East-West dichotomy regarding the dominant research in the focal innovation and design areas?

Western research seems to be overrepresented in every innovation area, based on the 100 most-cited review papers. Technological innovation, eco-innovation, social innovation, and business model innovation are the most dominant topics of the international literature, regarding both Eastern and Western research. The dominance of technological innovation is present in Eastern and Western research as well. In contrast, energy innovation, design innovation, and mainly cultural innovation are similarly underrepresented topics. Regarding the differences, Western eco-innovation reviews are more influential than Western social and business model innovation reviews, while Eastern research is uniformly less influential in these areas.

Detailed answers are presented based on the sub-questions.

4.2.1. SQ 1: Ecological and energy innovation

The first sub-question was the following:

What similarities and differences could be identified regarding the dominant ecological and energy innovation and design research?

The most relevant Eastern and Western reviews are similar regarding the historical aspects, as they often mention the Brundtland report from 1987 and the gradually increasing scientific, social and industrial attention toward environmental sustainability. Regarding economic aspects, circular economy development is clearly considered to be the main driver of eco-innovation, regardless of the affiliation countries. Eco-design is also unequivocally mentioned as a tool for eco-innovation. No significant differences are apparent in this innovation area.

4.2.2. SQ 2: Technological innovation

The second sub-question was the following:

What similarities and differences could be identified regarding the dominant technological innovation and design research?

In terms of the significance of technological innovation, the most relevant Eastern and Western reviews seem to be in line with each other (i.e., a tool for environmental adaptation and economic development). There is a difference, however, about how the most-cited works approach this topic. While most relevant Western reviews clearly focus on how to produce technological innovations in a business context (e.g., strategic ambidexterity, limiting process management, facilitating open innovations, introducing supporting policies), there are more technological specifics among the most-cited Eastern review papers (e.g., machine learning (ML), artificial intelligence (AI)). Accordingly, the historical and economic aspects of these topics are different. For example, Western general business and management studies highlight technological cycles, entry barriers or even to Schumpeter's thoughts from 1934, while Eastern ML and AI research reach back to the diffusion of personal computers to the 1970s-1980s.

4.2.3. SQ 3: Social and business model innovation

The third sub-question was the following:

What similarities and differences could be identified regarding the dominant social and business model innovation and design research?

The most relevant reviews are similar in the meaning of business model innovation and social innovation, however, and there are also similarities regarding the key topics of this area (e.g., the role of policymaking in case of transition management or local and regional planning). Nevertheless, while the most relevant Eastern studies interconnect business model innovation with internal factors (e.g., knowledge management or organizational inertia), the most relevant Western review follows rather an external approach (sustainable business models). Regarding social innovation, the most cited reviews were written by authors of Western institutions.

4.2.4. SQ 4: Cultural innovation

The fourth sub-question was the following:

What similarities and differences could be identified regarding the dominant cultural innovation and design research?

Highly cited Eastern and Western reviews mostly disregard the topic of cultural innovation compared to other focal innovation areas, however, there are at least a few studies which are more or less relevant in case of Western research. These are focusing on cognitive search processes and cultural transmission. In case of the design innovation, Eastern and Western research are similar in terms of the rareness of relevant design innovation reviews. The selected Western review approaches designbased knowledge from the business and management field (i.e., innovation networks), while the Eastern one would like to encourage sustainable product development (by a multi-life-cycle analysis method).

4.3. MQ III: Initial directions of recommendations from the transdisciplinary and the dynamic capabilities perspective

The third main research question was the following:

How can one (re-)interpret the influential thoughts of these innovation and design areas from key theoretical perspectives of strategy and change to support policymaking?

Based on the (re-)interpretation of the literature, transdisciplinary research and development, and dynamic capabilities are both relevant approaches to innovation and design-related strategic change.

Details of the (re-)interpretation opportunities of studies are presented in Table 21.

Area	Tra	ansdisciplinarity	Dy	namic capabilities
Ecological	-	Eco-innovation by innovation	-	Developing strategic sustainability behaviour
innovation		ecosystem building	-	Reconfiguration of business models in line
and design	-	Developing shared meanings by		with the circular economy strategies
		taxonomy development, involving	-	Introducing eco-processes, e.g., by cleaner
		stakeholders		production technologies, and eco-
	-	Building partnerships for radical		organization development, e.g., by an
		innovation and eco-design		environmental management system
Techno-	-	Leveraging external resources through	-	Managing strategic ambidexterity by
logical		open innovation		emphasized or limited process management
innovation	-	Developing and communicating clear	-	Enabling flexible structure, interacting
and design		policies, promoting certain sectors and		between units, empowerment, organizational
		clusters		culture development
	-	Combining interfirm capabilities by	-	Initiating organizational changes focusing on
		alliances, managerial ties, clusters		systems, culture, capabilities, learning,
				managerial attitudes
Social and	-	Transition management with broad	-	Aligning business strategy with impact vision,
business		societal discourse, inclusivity, and co-		cultural change for employee empowerment,
model		production of solutions, according to		resource allocation to enable networking,
innovation		broad techno-economic and societal		preventing organizational inertia
and design		aspects	-	Establishing social enterprises for supporting
	-	Responsible innovation based on		local and regional development
		stakeholder values, continuous		
		engagement and negotiations		
	-	Building sustainable business models	-	Business model innovation by improved
		according to technological, social, or		knowledge management and reducing
		organizational archetypes		organizational inertia
Cultural	-	Balancing exploitative and explorative	-	Managing continuously evolving networks to
innovation		search patterns to increase the		pursue incremental and discontinuous change
and		efficiency of problem-solving	-	Introducing a multi-life-cycle product system
design;	-	Driving cultural transmission, i.e.,		with cradle-to-cradle design and multi-
design		information exchange between		generation products
innovation		generations when individual learning is		
		too slow compared to the pace of		
		environmental changes		

Table 21. Suggestions based on the literature for strategic change in the focal innovation areas, from the transdisciplinary and the dynamic capabilities perspectives

Source: authors

Besides, three influential thoughts could be highlighted which can be unexpected but universally relevant for decision-makers:

- Sustainability-oriented innovations for circular economy development²⁰, cleaner production or eco-efficiency²¹ need not only eco-design but sustainability-rooted organizational behavior. However, this behavior cannot be based on a simple "switch" of the business model but on reaching different phases. Policymakers can provide activating and motivating external stimulus to change the *resistant* state into *reactive* and *anticipatory*, moreover, support capability building to reach the *innovation-based* and *sustainability-rooted* state. (Klewitz & Hansen, 2014)
- 2. In contrast to the frequent industrial and institutional practice which emphasizes operational efficiency and productivity efforts for decades and still nowadays, process management can be even counterproductive and build resistance to change in a technologically complex context. When incremental innovation is not enough, and radical innovation would be needed, limiting process management could be important to accelerate exploration instead of exploitation. (Benner & Tushman, 2003)
- Ecological and technological aspects, should not be argued only separately, but with an integrative approach based on business models, as it must go beyond the value proposition. For this purpose, technology-based sustainable business model archetypes can drive the transformation of organizations (e.g., creating value from waste or minimizing material use). (Bocken, et al., 2014)

4.4. Limitations and next phase

Based on the results and the conclusion, the following limitations must be highlighted which can orient the next phase:

- 1. This work aimed to explore what Eastern and Western topics and thoughts might be influential in the focal innovation areas *globally as a theoretical foundation*, and *not* what research topics are the most popular *in concrete Eastern and Western contexts*. The latter task belongs to the next phase, i.e., identifying change drivers and mapping.
- 2. Based on the appearance and relevance of innovation sub-areas, the categorization of the innovation areas might be fine-tuned. For example, given the importance of social innovation

²⁰ By maintaining, reusing, recycling (Saidani, et al., 2019)

²¹ For lower economic impact or economic gains (Klewitz & Hansen, 2014)

and business model innovation (both deriving from the socio-economic pillar of future potentials), they could be discussed separately or combine social innovation with ecological innovation within a "sustainable-oriented innovation" category which can cover ecological and social aspects as well. Another opportunity is to develop a matrix of pillars and innovation areas in the next phase, instead of pairing them.

- 3. As cultural innovation and design innovation (in a cultural sense) seem to be truly overlooked in case of innovation and design research, a deeper analysis of this area might be practical and also theoretically contributing, e.g., it could be the main topic of the scientific article.
- 4. Even though differences could be also outlined in the East-West context, the in-depth analysis revealed more similarities. It could be because of the nature of this meta-review, i.e., review papers are likely to provide more general understandings, and slight differences might emerge based on the specific sub-topic selection. Consequently, the next phase could focus on certain countries as "frontiers" of innovation and design horizons from the perspective of Hungary, V4, and the Carpathian basin. Accordingly, besides the most "Western" and "Eastern" countries, USA and China, other economically prospering but culturally distinctive countries are worth focusing on, for example, Israel, Japan, South Korea, and India.

5. Appendix

Top 100 highly-cited reviews in the four focal innovation and design areas from 2000, with East-West categorization based on the affiliation countries, ordered according to the number of citations

Authors	Article Title	Times Cited, WoS	Year	Search Category	Author Country	East/ West
Benner, MJ; Tushman, ML	Exploitation, exploration, and process management: The productivity dilemma revisited	2189	2003	Technological innovation	USA	West
Bocken, NMP; Short, SW; Rana, P; Evans, S	A literature and practice review to develop sustainable business model archetypes	1489	2014	Social and business model innovation	England	West
Crossan, MM; Apaydin, M	A Multi-Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature	1403	2010	Technological innovation	England; Egypt	Global
West, J; Bogers, M	Leveraging External Sources of Innovation: A Review of Research on Open Innovation	928	2014	Technological innovation	Denmark	West
Klewitz, J; Hansen, EG	Sustainability-oriented innovation of SMEs: a systematic review	621	2014	Ecological and energy innovation	Germany	West
Chapman, L	Transport and climate change: a review	603	2007	Technological innovation	England	West
Mirabella, N; Castellani, V; Sala, S	Current options for the valorization of food manufacturing waste: a review	572	2014	Ecological and energy innovation	Italy	West
Agarwal, R; Echambadi, R; Franco, AM; Sarkar, MB	Knowledge transfer through inheritance: Spinout generation, development, and survival	535	2004	Technological innovation	USA	West
Becheikh, N; Landry, R; Amara, N	Lessons from innovation empirical studies in the manufacturing sector: A systematic review of the literature from 1993-2003	511	2006	Technological innovation	Canada	West
Cardinal, LB	Technological innovation in the pharmaceutical industry: The use of organizational control in managing research and development	491	2001	Technological innovation	USA	West
McEvily, SK; Chakravarthy, B	The persistence of knowledge- based advantage: An empirical test for product performance and technological knowledge	440	2002	Technological innovation	USA; Switzerland	West
Qu, XL; Brame, J; Li, QL; Alvarez, PJJ	Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse	399	2013	Technological innovation	USA	West
Ghobakhloo, M	Industry 4.0, digitization, and opportunities for sustainability	389	2020	Social and business model innovation	Iran	East
Winans, K; Kendall, A; Deng, H	The history and current applications of the circular economy concept	384	2017	Social and business model	USA	West

Geissdoerfer, M;	Sustainable business model	202	204.0	Social and business	England;	Most
Vladimirova, D; Evans, S	innovation: A review	382	2018	model innovation	USA	West
Boyjoo, Y; Sun, HQ; Liu, J; Pareek, VK; Wang, SB	A review on photocatalysis for air treatment: From catalyst development to reactor design	351	2017	Ecological and energy innovation	Australia	West
Sheremata, WA	Centrifugal and centripetal forces in radical new product development under time pressure	332	2000	Technological innovation	USA	West
Avlonitis, GJ; Papastathopoulou, PG; Gounaris, SP	An empirically-based typology of product innovativeness for new financial services: Success and failure scenarios	329	2001	Technological innovation	Greece	West
Pieroni, MPP; McAloone, TC; Pigosso, DCA	Business model innovation for circular economy and sustainability: A review of approaches	329	2019	Social and business model innovation	Denmark	West
Saidani, M; Yannou, B; Leroy, Y; Cluzel, F; Kendall, A	A taxonomy of circular economy indicators	321	2019	Ecological and energy innovation	USA	West
de Medeiros, JF; Ribeiro, JLD; Cortimiglia, MN	Success factors for environmentally sustainable product innovation: a systematic literature review	308	2014	Ecological and energy innovation	Brasil	Other
Prajogo, DI; Ahmed, PK	Relationships between innovation stimulus, innovation capacity, and innovation performance	307	2006	Technological innovation	England	West
Hojnik, J; Ruzzier, M	What drives eco-innovation? A review of an emerging literature	304	2016	Ecological and energy innovation	Slovenia	West
Janssen, S; van Ittersum, MK	Assessing farm innovations and responses to policies: A review of bio-economic farm models	294	2007	Technological innovation	Netherlands	West
Bossle, MB; de Barcellos, MD; Vieira, LM; Sauvee, L	The drivers for adoption of eco- innovation	285	2016	Ecological and energy innovation	Brazi; France	Global
Voss, JP; Smith, A; Grin, J	Designing long-term policy: rethinking transition management	267	2009	Social and business model innovation	Germany; England; Netherlands	West
Galli, P; Vecellio, G	Technology: driving force behind innovation and growth of polyolefins	264	2001	Technological innovation	Italy	West
Hills, TT; Todd, PM; Lazer, D; Redish, AD; Couzin, ID	Exploration versus exploitation in space, mind, and society	242	2015	Cultural and design innovation	England; USA; Germany	West
Chauhan, BS; Mahajan, G; Sardana, V; Timsina, J; Jat, ML	PRODUCTIVITY AND SUSTAINABILITY OF THE RICE- WHEAT CROPPING SYSTEM IN THE INDO-GANGETIC PLAINS OF THE INDIAN SUBCONTINENT: PROBLEMS, OPPORTUNITIES, AND STRATEGIES	234	2012	Technological innovation	India	East
Bercovitz, JEL; Feldman, MP	Fishing upstream: Firm innovation strategy and university research alliances	222	2007	Technological innovation	USA	West

Diaz-Garcia, C; Gonzalez-Moreno, A; Saez-Martinez, FJ	Eco-innovation: insights from a literature review	222	2015	Ecological and energy innovation	Spain	West
Kyriakopoulos, K; Moorman, C	Tradeoffs in marketing exploitation and exploration strategies: The overlooked role of market orientation	218	2004	Technological innovation	Netherlands; USA	West
Colombo, MG; Grilli, L; Piva, E	In search of complementary assets: The determinants of alliance formation of high-tech start-ups	217	2006	Technological innovation	Italy	West
Mesoudi, A; Whiten, A	The multiple roles of cultural transmission experiments in understanding human cultural evolution	200	2008	Cultural and design innovation	England; Scotland	West
Qi, GY; Zeng, SX; Tam, CM; Yin, HT; Zou, HL	Stakeholders' Influences on Corporate Green Innovation Strategy: A Case Study of Manufacturing Firms in China	199	2013	Ecological and energy innovation	China	East
Wiggins, RR; Ruefli, TW	Sustained competitive advantage: Temporal dynamics and the incidence and persistence of superior economic performance	198	2002	Technological innovation	USA	West
Calabro, A; Vecchiarini, M; Gast, J; Campopiano, G; De Massis, A; Kraus, S	Innovation in Family Firms: A Systematic Literature Review and Guidance for Future Research	191	2019	Technological innovation	France; Germany; Italy; England	West
Khan, F; Ahmad, SR	Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application	181	2013	Technological innovation	Scotland; England	West
Dushnitsky, G; Shaver, JM	LIMITATIONS TO INTERORGANIZATIONAL KNOWLEDGE ACQUISITION: THE PARADOX OF CORPORATE VENTURE CAPITAL	180	2009	Technological innovation	USA	West
Zhang, ZY; Dong, YJ; Li, F; Zhang, ZM; Wang, HT; Huang, XJ; Li, H; Liu, B; Wu, XX; Wang, H; Diao, XZ; Zhang, HQ; Wang, JH	The Shandong Shidao Bay 200 MWe High-Temperature Gas- Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation	170	2016	Technological innovation	China	East
Tarrant, MK; Cole, PA	The Chemical Biology of Protein Phosphorylation	169	2009	Technological innovation	USA	West
Ali, S; Champagne, DL; Spaink, HP; Richardson, MK	Zebrafish Embryos and Larvae: A New Generation of Disease Models and Drug Screens	165	2011	Technological innovation	Netherlands	West
Sudakaran, S; Kost, C; Kaltenpoth, M	Symbiont Acquisition and Replacement as a Source of Ecological Innovation	163	2017	Ecological and energy innovation	Germany; USA	West
Surrs, RAA; Hekkert, MP	Cumulative causation in the formation of a technological innovation system: The case of biofuels in the Netherlands	161	2009	Technological innovation	Netherlands	West
King, DR;	Performance implications of firm resource interactions in the	156	2008	Technological	USA	West

Hienerth, C	The commercialization of user innovations: the development of the rodeo kayak industry	156	2006	Technological innovation	Austria	West
Bogers, M; West, J	Managing Distributed Innovation: Strategic Utilization of Open and User Innovation	153	2012	Technological innovation	Denmark	West
Hudry, E; Vandenberghe, LH	Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality	151	2019	Technological innovation	USA	West
del Rio, P; Penasco, C; Romero-Jordan, D	What drives eco-innovators? A critical review of the empirical literature based on econometric methods	150	2016	Ecological and energy innovation	Spain	West
Nussholz, JLK	Circular Business Models: Defining a Concept and Framing an Emerging Research Field	149	2017	Social and business model innovation	Sweden	West
Gallagher, KS; Grubler, A; Kuhl, L; Nemet, G; Wilson, C	The Energy Technology Innovation System	146	2012	Ecological and energy innovation	USA; England	West
Xu, LZ; Shyu, TC; Kotov, NA	Origami and Kirigami Nanocomposites	144	2017	Technological innovation	USA	West
von Keyserlingk, MAG; Martin, NP; Kebreab, E; Knowlton, KF; Grant, RJ; Stephenson, M; Sniffen, CJ; Harner, JR; Wright, AD; Smith, SI	Invited review: Sustainability of the US dairy industry	144	2013	Technological innovation	Canada; USA	West
Karakaya, E; Hidalgo, A; Nuur, C	Diffusion of eco-innovations: A review	144	2014	Ecological and energy innovation	Spain; Sweden	West
Li, X; Wu, P; Shen, GQP; Wang, XY; Teng, Y	Mapping the knowledge domains of Building Information Modeling (BIM): A bibliometric approach	143	2017	Technological innovation	China; Australia	Global
de Jesus, A; Antunes, P; Santos, R; Mendonca, S	Eco-innovation in the transition to a circular economy: An analytical literature review	140	2018	Ecological and energy innovation	Portugal; England	West
Swink, M; Nair, A	Capturing the competitive advantages of AMT: Design- manufacturing integration as a complementary asset	137	2007	Technological innovation	USA; Columbia	Global
Cillo, V; Petruzzelli, AM; Ardito, L; Del Giudice, M	Understanding sustainable innovation: A systematic literature review	137	2019	Social and business model innovation	Italy	West
Sheth, RU; Cabral, V; Chen, SP; Wang, HH	Manipulating Bacterial Communities by in situ Microbiome Engineering	135	2016	Technological innovation	USA	West
Graf, BL; Rojas- Silva, P; Rojo, LE; Delatorre-Herrera, J; Baldeon, ME; Raskin, I	Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.)	135	2015	Technological innovation	USA; Chile; Equador	Global
Capaldo, A; Petruzzelli, AM	Partner Geographic and Organizational Proximity and the Innovative Performance of Knowledge-Creating Alliances	134	2014	Technological innovation	Italy	West

Macia, E	Exploiting aperiodic designs in nanophotonic devices	132	2012	Technological innovation	Spain	West
Geissdoerfer, M; Pieroni, MPP; Pigosso, DCA; Soufani, K	Circular business models: A review	132	2020	Social and business model innovation	England; Denmark	West
Blackman, S; Matlo, C; Bobrovitskiy, C; Waldoch, A; Fang, ML; Jackson, P; Mihailidis, A; Nygard, L; Astell, A; Sixsmith, A	Ambient Assisted Living Technologies for Aging Well: A Scoping Review	129	2016	Technological innovation	Canada; Sweden; England	West
Barbieri, N; Ghisetti, C; Gilli, M; Marin, G; Nicolli, F	A SURVEY OF THE LITERATURE ON ENVIRONMENTAL INNOVATION BASED ON MAIN PATH ANALYSIS	129	2016	Ecological and energy innovation	Italy; France	West
Mangaroska, K; Giannakos, M	Learning Analytics for Learning Design: A Systematic Literature Review of Analytics-Driven Design to Enhance Learning	128	2019	Technological innovation	Norway	West
Mueller, V; Rosenbusch, N; Bausch, A	Success Patterns of Exploratory and Exploitative Innovation: A Meta-Analysis of the Influence of Institutional Factors	128	2013	Technological innovation	Germany; Canada	West
Limb, CJ; Roy, AT	Technological, biological, and acoustical constraints to music perception in cochlear implant users	128	2014	Technological innovation	USA	West
Lubberink, R; Blok, V; van Ophem, J; Omta, O	Lessons for Responsible Innovation in the Business Context: A Systematic Literature Review of Responsible, Social and Sustainable Innovation Practices	128	2017	Social and business model innovation	Netherlands	West
Schmid, O; Padel, S; Levidow, L	The Bio-Economy Concept and Knowledge Base in a Public Goods and Farmer Perspective	128	2012	Social and business model innovation	England	West
Lubberink, R; Blok, V; van Ophem, J; Omta, O	Lessons for Responsible Innovation in the Business Context: A Systematic Literature Review of Responsible, Social and Sustainable Innovation Practices	128	2017	Ecological and energy innovation	Netherlands	West
Jordaan, SM; Romo-Rabago, E; McLeary, R; Reidy, L; Nazari, J; Herremans, IM	The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada	127	2017	Ecological and energy innovation	USA; Canada	West
Zhao, DX; He, BJ; Johnson, C; Mou, B	Social problems of green buildings: From the humanistic needs to social acceptance	127	2015	Ecological and energy innovation	China; Japan	Global
Smol, M; Kulczycka, J; Avdiushchenko, A	Circular economy indicators in relation to eco-innovation in European regions	127	2017	Ecological and energy innovation	Poland; Ukraine	Global
Ketata, I; Sofka, W; Grimpe, C	The role of internal capabilities and firms' environment for sustainable innovation: evidence for Germany	124	2015	Ecological and energy innovation	USA; Denmark	West
Pacheco, DAD; ten Caten, CS; Jung, CF; Ribeiro, JLD; Navas, HVG; Cruz- Machado, VA	Eco-innovation determinants in manufacturing SMEs: Systematic review and research directions	123	2017	Ecological and energy innovation	Brasil; Portugal	Global

Luca, F; Perry, GH; Di Rienzo, A	Evolutionary Adaptations to Dietary Changes	120	2010	Cultural and design innovation	USA	West
Edwards- Schachter, ME; Matti, CE; Alcantara, E	Fostering Quality of Life through Social Innovation: A Living Lab Methodology Study Case	119	2012	Social and business model innovation	Spain	West
Choi, SB; Park, BI; Hong, P	Does Ownership Structure Matter for Firm Technological Innovation Performance? The Case of Korean Firms	118	2012	Technological innovation	South Korea	Other
MacVaugh, J; Schiavone, F	Limits to the diffusion of innovation A literature review and integrative model	118	2010	Technological innovation	England; Italy	West
Li, FGN; Trutnevyte, E; Strachan, N	A review of socio-technical energy transition (STET) models	117	2015	Technological innovation	England; Switzerland	West
Tariq, A; Badir, YF; Tariq, W; Bhutta, US	Drivers and consequences of green product and process innovation: A systematic review, conceptual framework, and future outlook	116	2017	Technological innovation	Thailand; Pakistan, China	East
Hossain, M; Leminen, S; Westerlund, M	A systematic review of living lab literature	116	2019	Social and business model innovation	England; Finland; Canada	West
Polzin, F	Mobilizing private finance for low- carbon innovation - A systematic review of barriers and solutions	116	2017	Ecological and energy innovation	Netherlands	West
Shane, SA; Ulrich, KT	Technological innovation, product development, and entrepreneurship in Management Science	115	2004	Technological innovation	USA	West
Wang, HL; Li, JT	Untangling the effects of overexploration and overexploitation on organizational performance: The moderating role of environmental dynamism	115	2008	Technological innovation	China	East
Nicoll, K	Recent environmental change and prehistoric human activity in Egypt and Northern Sudan	115	2004	Technological innovation	England	West
Steensen, S	ONLINE JOURNALISM AND THE PROMISES OF NEW TECHNOLOGY A critical review and look ahead	114	2011	Technological innovation	Norway	West
Belloc, F	CORPORATE GOVERNANCE AND INNOVATION: A SURVEY	112	2012	Technological innovation	Italy	West
Grawe, SJ	Logistics innovation: a literature- based conceptual framework	110	2009	Technological innovation	USA	West
Hou, TY; Chuan, CN; Teng, SH	Current status of MALDI-TOF mass spectrometry in clinical microbiology	110	2019	Technological innovation	Taiwan	East
Fincheira, P; Quiroz, A	Microbial volatiles as plant growth inducers	110	2018	Technological innovation	Chile	Other
Leal, W; Ellams, D; Han, S; Tyler, D; Boiten, VJ; Paco, A; Moora, H; Balogun, AL	A review of the socio-economic advantages of textile recycling	106	2019	Ecological and energy innovation	Germany; England; Portugal; Estonia; Malaysia	Global
Ghisellini, P; Ji, X; Liu, GY; Ulgiati, S	Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review	105	2018	Ecological and energy innovation	Italy; China	Global

Nanoscale Phenomena in Oxide Heterostructures	104	2014	Technological innovation	Israel; USA	West
Industry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries	103	2019	Social and business model innovation	England	West
Machine learning for perovskite materials design and discovery	98	2021	Technological innovation	China	East
Safety risk management of underground engineering in China: Progress, challenges and strategies	98	2016	Technological innovation	China	East
Artificial Intelligence in Education: A Review	98	2020	Technological innovation	China	East
A typology of project-level technology transfer processes	97	2000	Technological innovation	USA	West
	Heterostructures Industry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries Machine learning for perovskite materials design and discovery Safety risk management of underground engineering in China: Progress, challenges and strategies Artificial Intelligence in Education: A Review A typology of project-level	Heterostructures104Industry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries103Machine learning for perovskite materials design and discovery98Safety risk management of underground engineering in China: Progress, challenges and strategies98Artificial Intelligence in Education: A Review98	Heterostructures1042014HeterostructuresIndustry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries1032019Machine learning for perovskite materials design and discovery982021Safety risk management of underground engineering in China: Progress, challenges and strategies982016Artificial Intelligence in Education: A Review982020A typology of project-level972000	Heterostructures1042014innovationIndustry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries1032019Social and business model innovationMachine learning for perovskite materials design and discovery982021Technological innovationSafety risk management of underground engineering in China: Progress, challenges and strategies982016Technological innovationArtificial Intelligence in Education: A Review982020Technological innovationA typology of project-level972000Technological	Heterostructures1042014InnovationIsrael; USAIndustry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries1032019Social and business modelEnglandMachine learning for perovskite materials design and discovery982021Technological innovationChinaSafety risk management of underground engineering in China: Progress, challenges and strategies982016Technological innovationChinaArtificial Intelligence in Education: A Review982020Technological innovationChinaA typology of project-level972000Technological innovationChina

6. References

- Aczél, P., 2018. Social Futuring A discursive-conceptual framework. Society and Economy, 40 (S1), pp. 47–75 https://doi.org/ 10.1556/204.2018.40.S1.4
- Ackermann, R. R., Mackay, A. & Arnold, M. L., 2016. The Hybrid Origin of "Modern" Humans. Evolutionary Biology, 43, pp. 1–11. https://doi.org/10.1007/s11692-015-9348-1.
- Amran, Y. H. M. et al., 2020. Design innovation, efficiency and applications of structural insulated panels: A review. Structures, 27, pp. 1358-1379. https://doi.org/10.1016/j.istruc.2020.07.044.
- Baregheh, A., Rowley, J. & Sambrook, S., 2009. Towards a multidisciplinary definition of innovation. Management Decision, 47 (8), pp. 1323-1339. https://doi.org/10.1108/00251740910984578.
- Barney, J. B., 1991. Firm resources and sustained competitive advantage. Journal of Management, 17 (1), p. 99– 120.
- Barney, J., 1991. Firm Resources and Sustained Competitive Advantage. Journal of Management, 17, pp. 99-120. https://doi.org/10.1177/014920639101700108.
- Bashir, M. & Farooq, R., 2018. The synergetic effect of knowledge management and business model innovation on firm competence: A systematic review. International Journal of Innovation Science, 11 (3), pp. 362-387. https://doi.org/10.1108/IJIS-10-2018-0103.
- Bashir, M. & Verma, R., 2019. Internal factors & consequences of business model innovation. Management Decision, 57 (1), pp. 262-290. https://doi.org/10.1108/MD-11-2016-0784.
- Becheikh, N., Landry, R. & Amara, A., 2006. Lessons from innovation empirical studies in the manufacturing sector: A systematic review of the literature from 1993–2003. Technovation, 26 (5-6), pp. 644-664. https://doi.org/10.1016/j.technovation.2005.06.016.
- Belcher, B. M., Claus, R., Davel, R. & Ramirez, L. F., 2019. Linking transdisciplinary research characteristics and quality to effectiveness: A comparative analysis of five research-for-development projects. Environmental Science & Policy, 101, pp. 192-203. https://doi.org/10.1016/j.envsci.2019.08.013.
- Benner, M. J. & Tushman, M. L., 2003. Exploitation, Exploration, and Process Management: The Productivity Dilemma Revisited. The Academy of Management Review, 28 (2), pp. 238-256. https://doi.org/10.2307/30040711.
- Bocken, N. M. P., Short, S. W., Rana, P. & Evans, S., 2014. A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production, 65, pp. 42-56. https://doi.org/10.1016/j.jclepro.2013.11.039.
- Burgelman, R. A., 1991. Intraorganizational Ecology of Strategy Making and Organizational Adaption: Theory and Field Research. Organizational Science, 2 (3), pp. 239-262. https://doi.org/10.1287/orsc.2.3.239.
- Burnes, B., 2017. Managin Change Seventh Edition. Harlow: Pearson.
- Chen, L., Chen, P. & Lin, Z., 2020. Artificial Intelligence in Education: A Review. IEEE Access, 8, pp. 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510.

- Choudhary, P. & Srivastava, R. K., 2019. Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities. Journal of Cleaner Production, 227, pp. 589-612. https://doi.org/10.1016/j.jclepro.2019.04.107.
- Csedő, Z., Zavarkó, M. & Sára, Z., 2019a. Innováció-e a digitalizáció? A digitális transzformáció és az innovációmenedzsment tanulságai egy pénzügyi szolgáltatónál. Vezetéstudomány, 50 (7-8), pp. 88-101. https://doi.org/10.14267/VEZTUD.2019.07.08.
- Csedő, Z., Zavarkó, M. & Sára, Z., 2019b. Tudásmenedzsment és stratégiai kettős képesség Felsővezetői döntések elemzése az innovációs stratégia megvalósítása során. Vezetéstudomány, 50 (3), pp. 36-49. https://doi.org/10.14267/VEZTUD.2019.03.04.
- Csedő, Z. & Zavarkó, M., 2019a. Változás, tudás és innováció a vezetéstudományban: elméleti modellek elemzése és értelmezése (Change, knowledge and innovation in management science: analysis and interpretation of theoretical models). Vezetéstudomány - Budapest Management Review, 50 (12), pp. 173-184. https://doi.org/10.14267/VEZTUD.2019.12.15.
- Csedő, Z. & Zavarkó, M., 2019b. Változásvezetés (Change Management). Budapest: Akadémiai Kiadó.
- Csedő, Z. & Zavarkó, M., 2020. The role of inter-organizational innovation networks as change drivers in commercialization of disruptive technologies: The case of power-to-gas. International Journal of Sustainable Energy Planning and Management, 28, p. 53–70. https://doi.org/10.5278/ijsepm.3388.
- Csedő, Z. & Zavarkó, M., 2021. Társaságirányítás (Coprorate Governance). Budapest: Akadémiai Kiadó.
- Di Vaio, A., Palladino, R., Hassan, R. & Escobar, O., 2020. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, pp. 283-314. https://doi.org/10.1016/j.jbusres.2020.08.019.
- Duncan, R., 1976. The ambidextrous organization: Designing dual structures for innovation. The management of organization design, 1, p. 167–188.
- Fisch, C. & Block, J., 2018. Six tips for your (systematic) literature review in business and management research. Management Review Quarterly, 68, pp. 103-106. https://doi.org/10.1007/s11301-018-0142-x.
- Gibson, C. B. & Birkinshaw, J., 2004. The Antecedents, Consequences, and Mediating Role of Organizational Ambidexterity. Academy of Management Journal, 47 (2), pp. 209-226. https://doi.org/10.2307/20159573.
- Grant, M. R., 1996. Toward a knowledge-based theory of the firm. Strategic Management Journal, 17, pp. 109-122. https://doi.org/10.1002/smj.4250171110.
- Guesalaga, R. et al., 2018. Which resources and capabilities underpin strategic key account management? Industrial Marketing Management, 75, pp. 160-172. https://doi.org/10.1016/j.indmarman.2018.05.006.
- He, F., Miao, X., Wong, C. W. Y. & Lee, S., 2018. Contemporary corporate eco-innovation research: A systematic review. Journal of Cleaner Production, 174, pp. 502-526. https://doi.org/10.1016/j.jclepro.2017.10.314.
- Helfat, C. E. & Peteraf, M. A., 2003. The dynamic resource-based view: Capability lifecycles. Strategic Management Journal, 24, pp. 997-1010. https://doi.org/10.1002/smj.332.

- Hiebl, M. R. W., 2021. Sample Selection in Systematic Literature Reviews of Management Research.
 Organizational Research Methods, January 29, 2021, pp. 1-33.
 https://doi.org/10.1177/1094428120986851.
- Hills, T. T. et al., 2015. Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19 (1), pp. 46-54. https://doi.org/10.1016/j.tics.2014.10.004.
- Hoppmann, J., Naegele, F. & Girod, B., 2019. 2. Boards as a source of inertia: Examining the internal challenges and dynamics of boards of directors in times of environmental discontinuities. Academy of Management Journal, 62 (2), pp. 437-468. https://doi.org/10.5465/amj.2016.1091.
- Hoppmann, J., Naegele, F. & Girod, B., 2019. Boards as a Source of Inertia: Examining the Internal Challenges and Dynamics of Boards of Directors in Times of Environmental Discontinuities. Academy of Management Journal, 62 (2), p. 437–468. https://doi.org/10.5465/amj.2016.1091.
- Huntington, S. P., 1991. Clash of Civilizations. New York: Simon & Schuster.
- Jordaan, S. M. et al., 2017. The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada. Renewable and Sustainable Energy Reviews, 78, pp. 1397-1409. https://doi.org/10.1016/j.rser.2017.05.162.
- Kim, D. & Lim, U., 2017. Social Enterprise as a Catalyst for Sustainable Local and Regional Development. Sustainability, 9, p. 1427. https://doi.org/10.3390/su9081427.
- Klewitz, J. & Hansen, E. G., 2014. Sustainability-oriented innovation of SMEs: a systematic review. Journal of Cleaner Production, 65, pp. 57-75. https://doi.org/10.1016/j.jclepro.2013.07.017.
- Knight, E., Daymond, J. & Paroutis, S., 2020. Design-Led Strategy: How To Bring Design Thinking Into The Art of Strategic Management. California Management Review, 62 (2), p. 30–52. https://doi.org/10.1177/000812561989759.
- Kuo, T.-C. & Smith, S., 2018. A systematic review of technologies involving eco-innovation for enterprises moving towards sustainability. Journal of Cleaner Production, 192, pp. 207-220. https://doi.org/10.1016/j.jclepro.2018.04.212.
- Lang, D. J. et al., 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science, 7, pp. 25–43. https://doi.org/10.1007/s11625-011-0149-x.
- Le Masson, P., Weil, B. & Hatchuel, A., 2010. Strategic Management of Innovation and Design. ISSN: 9780511779916 https://doi.org/10.1017/CBO9780511779916 ed. s.l.:Cambridge University Press.
- Lubberink, R., Blok, V., Van Ophem, J. & Omta, O., 2017. Lessons for Responsible Innovation in the Business Context: A Systematic Literature Review of Responsible, Social and Sustainable Innovation Practices. Sustainability, 9, p. 721. https://doi.org/10.3390/su9050721.
- MacLean, D., MacIntosh, R. & Grant, S., 2002. Mode 2 Management Research. British Journal of Management, 13, pp. 189-207. https://doi.org/10.1111/1467-8551.00237.
- Magyari, J., Zavarkó, M. & Csedő, Z., 2022. Smart knowledge management driving green transformation: A comparative case study. Smart Energy, 7, p. 100085. https://doi.org/10.1016/j.segy.2022.100085.
- March, J. G., 1991. Exploration and exploitation in organizational learning. Organization Science, 2 (1), p. 71–87. https://doi.org/10.1287/orsc.2.1.71.

- Mariani, M., Machado, I. & Nambisan, S., 2023. Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda. Journal of Business Research, Part B, p. 113364. https://doi.org/10.1016/j.jbusres.2022.113364.
- Mesoudi, A. & Whiten, A., 2008. The multiple roles of cultural transmission experiments in understanding human cultural evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1509), p. 3489–3501. http://doi.org/10.1098/rstb.2008.0129.
- Mirabella, N., Castellani, V. & Sala, S., 2014. Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, pp. 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051.
- OECD, 2005. Oslo Manual Third Edition, s.l.: OECD / Eurostat.
- Okoli, C., 2015. A Guide to Conducting a Standalone Systematic Literature Review. Communications of the Association for Information Systems, 37, pp. 879-910. https://doi.org/10.17705/1CAIS.03743.
- Pisano, G. P., 2017. Toward a prescriptive theory of dynamic capabilities: connecting strategic choice, learning, and competition. Industrial and Corporate Change, 26 (5), p. 747–762. https://doi.org/10.1093/icc/dtx026.
- Pörzse, G., 2008. Innovációmenedzsment. Budapest: Semmelweis Kiadó.
- Pörzse, G., 2011. Kutatásszervezés és innovációmenedzsment az egészség- és élettudományok területén. Budapest: Semmelweis Kiadó.
- Saidani, M. et al., 2019. A taxonomy of circular economy indicators. Journal of Cleaner Production, 207, pp. 542-559. https://doi.org/10.1016/j.jclepro.2018.10.014.
- Sára, Z. et al., 2013. A korszerű információ-technológiai megoldások szerepe az orvos-beteg kommunikáció javításában. IME, 12 (4), pp. 20-24.
- Smart, P., Bessant, J. & Gupta, A., 2007. Towards technological rules for designing innovation networks: a dynamic capabilities view. International Journal of Operations & Production Management, 27 (10), pp. 1069-1092. https://doi.org/10.1108/01443570710820639.
- Snyder, H., 2019. Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, pp. 333-339.
- Suhariyanto, T. T., Wahab, D. A. & Rahman, M. N. A., 2017. Multi-Life Cycle Assessment for sustainable products:
 A systematic review. Journal of Cleaner Production, 165, pp. 677-696. https://doi.org/10.1016/j.jclepro.2017.07.123.
- Sydow, J., Schreyögg, G. & Koch, J., 2009. Organizational path dependence: Opening the black box. Academy of Management Review, 34 (4), pp. 689-709. https://doi.org/10.5465/amr.34.4.zok689.
- Szántó, Z. O. et al., 2020. Social Futuring Index: Concept, Methodology and Full Report 2020, Part I, Budapest: Corvinus University of Budapest.
- Szántó, Z. O., 2018. Social Futuring An Analytical Conceptual Framework. Society and Economy, 40 (S1), p. 5– 20. https://doi.org/10.1556/204.2018.40.S1.2.
- Szántó, Z. O., et al., 2019. Foundations of the Social Futuring Index. Információs Társadalom XIX (4), pp. 115–132. https://dx.doi.org/10.22503/inftars.XIX.2019.4.8

- Szántó, Z. O., et al., 2023. Future Potential Index | 2022 Concept, Measurements and Results. Future Potentials Observatory: Budapest.
- Tao, Q., Xu, P., Li, M. & Lu, W., 2021. Machine learning for perovskite materials design and discovery. npj Comput Mater, 7, pp. 23. https://doi.org/10.1038/s41524-021-00495-8.
- Teece, 2007. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28 (13), pp. 319-1350. DOI: 10.1002/smj.640.
- Teece, D. J., 1984. Economic Analysis and Strategic Management. California Management Review, 26 (3), pp. 87-110.
- Teece, D. J., Pisano, G. & Schuen, A., 1997. Dynamic capabilities and strategic management. Strategic Management Journal, 18 (7), pp. 509–533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z.
- Thomé, A. M. T., Scavarda, L. F. & Scavarda, A. J., 2016. Conducting systematic literature review in operations management. Production Planning & Control, 27, pp. 408-420. https://doi.org/10.1080/09537287.2015.1129464.
- Tidd, J. & Thuriaux-Alemán, B., 2016. Innovation management practices: cross-sectorial adoption, variation, and effectiveness. R&D Management, 46 (S3), pp. 1024-1043. https://doi.org/10.1111/radm.12199.
- Tihanyi, L., Graffin, S. & George, G., 2014. Rethinking Governance in Management Research. Academy of Management Journal, 57 (6), pp. 1535–1543, https://doi.org/10.5465/amj.2014.4006.
- Voß, J., Smith, A. & Grin, J., 2009. Designing long-term policy: rethinking transition management. Policy Sciences, 42, pp. 275–302. https://doi.org/10.1007/s11077-009-9103-5.
- Wang, Y. et al., 2018. A review on research status and key technologies of battery thermal management and its enhanced safety. International Journal of Energy Research, pp. 4008-4033. https://doi.org/10.1002/er.4158.
- Wernelfelt, B., 1984. A resource-based view of the firm. Strategic Management Journal, 5, p. 171–180. https://doi.org/10.1002/smj.4250050207.
- West, J. & Bogers, M., 2014. Leveraging External Sources of Innovation: A Review of Research on Open Innovation. Journal of Product Innovation Management, 31 (4), pp. 814-831. https://doi.org/10.1111/jpim.12125.
- Yang, J., Liu, H., Gao, S. & Li, Y., 2012. Technological innovation of firms in China: Past, present, and future. Asia Pacific Journal of Management, 28, pp. 819–840. https://doi.org/10.1007/s10490-010-9243-3.